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Abstract

In this paper a boundary element method is developed for the solution of the general transverse shear loading prob-
lem of composite beams of arbitrary constant cross-section. The composite beam consists of materials in contact, each
of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same
Poisson�s ratio and are firmly bonded together. The analysis of the beam is accomplished with respect to a coordinate
system that has its origin at the centroid of the cross-section, while its axes are not necessarily the principal ones. The
transverse shear loading is applied at the shear centre of the cross-section, avoiding in this way the induction of a twist-
ing moment. Two boundary value problems that take into account the effect of Poisson�s ratio are formulated with
respect to stress functions and solved employing a pure BEM approach, that is only boundary discretization is used.
The evaluation of the transverse shear stresses is accomplished by direct differentiation of these stress functions, while
both the coordinates of the shear center and the shear deformation coefficients are obtained from these functions using
only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency,
the accuracy and the range of applications of the developed method. The accuracy of the proposed shear deformation
coefficients compared with those obtained from a 3-D FEM solution of the �exact� elastic beam theory is remarkable.
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Nomenclature

A area of composite cross-section
C centroid of composite cross-section
Ej modulus of elasticity of the jth material
Gj shear modulus of the jth material
Iyy, Izz, Iyz moments of inertia with respect to y and z axes and the product of inertia of composite

cross-section
K number of materials
M center of twist of composite cross-section
My, Mz bending moments with respect to y and z axes
Qy, Qz shear forces with respect to y and z axes
S shear center of composite cross-section
yS, zS coordinates of the shear center with respect to the centroid of cross-section
ay, az, ayz shear deformation coefficients
Cj boundary of the jth inclusion
jy, jz, jyz shear correction factors
m Poisson�s ratio
(rxx)j normal stress component in x direction
(sxy)j, (sxz)j transverse (direct) shear stress components in y and z directions, respectively
(sX)j resultant transverse shear stress in the regions Xj

(sxn)j, (sxt)j transverse shear stress components in directions n and t, normal and tangential to the
cross-section boundary Cj, respectively

(sC)j resultant transverse shear stress to the cross-section boundary Cj

(U(y,z))j, (H(y,z))j stress functions
Xj region occupied by the jth material
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1. Introduction

The problem of a homogeneous prismatic beam subjected in shear torsionless loading has been widely
studied from both the analytical and numerical point of view. Both theoretical discussions concerning flex-
ural shear stresses (Weber, 1924; Trefftz, 1935; Goodier, 1944), or the problem of the center of shear (Goo-
dier, 1944; Osgood, 1943; Weinstein, 1947; Reissner and Tsai, 1972) and text books giving detailed
representations of these topics (Timoshenko and Goodier, 1984; Sokolnikoff, 1956; Love, 1952) are men-
tioned among the extended analytical studies.

Numerical methods have also been used for the analysis of the aforementioned problem. Among these
methods the majority of researchers have employed the finite element method based on assumptions for the
displacement field (Mason and Herrmann, 1968) or introducing a stress function that fulfils the equilibrium
equations for the evaluation of the shear stresses (Gruttmann et al., 1999, 1998; Koczyk, 1994) and the
shear deformation coefficients (Gruttmann and Wagner, 2001). The boundary element method has also
been employed by Sauer (1980) for the calculation of shear stresses based on Weber analysis (1924) and
neglecting Poisson ratio m. BEM was also used for the calculation of the shear center location in an arbi-
trary homogeneous cross-section by Chou (1993) and for the presentation of a solution to the general flex-
ure problem in an isotropic only simply connected arbitrary cross-section beam by Friedman and
Kosmatka (2000). In this research effort the analysis is accomplished with respect only to the principal
bending axes of the cross-section restricting in this way its generality.
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Contrary to these many efforts, to the authors� knowledge very little work has been done on the cor-
responding problem of composite beams of arbitrary constant cross-section. In the pioneer work of Mus-
khelishvili (1963) the governing equations of the problem are formulated and an analytic solution of a
composite cross-section of simple geometry is presented. Nouri and Gay (1994) presented a numerical
solution for the shear problem of composite beams of simply connected materials in contact, of arbitrary
cross-section, employing the 2-D FEM and taking into account the boundary conditions at the interfaces.
In this reference the shear problem is formulated with respect to the principal bending axes system, which
as it is stated below is different from the principal shear axes one, while the evaluation of the non-diagonal
shear deformation coefficient is missing. Moreover, Fatmi and Zenzri (2004) based on the �exact� elastic
beam theory presented a numerical solution of the shear problem of composite beams of arbitrary cross-
section employing the 3-D FEM. The last two references take into account the boundary conditions at the
interfaces in contrast with all other research efforts in composite beams of arbitrary cross-section that
ignore them (Pilkey, 2002), resulting in an analysis that is not completely rigorous. In the case of com-
posite beams of thin-walled or laminated cross-sections the aforementioned problem can also be solved
using the �refined models� (Reddy, 1989; Touratier, 1992a,b; Karama et al., 2003). However, these models
do not satisfy the continuity conditions of transverse shear stress at layer interfaces and assume that the
transverse shear stress along the thickness coordinate remains constant, leading to the fact that kinematic
or static assumptions cannot be always valid. It is also worth here noting that most of the commercial
finite element packages can only handle the shear problem of homogeneous beams (MSC/NASTRAN,
1999), while the corresponding ones handling composite beams usually ignore the boundary conditions
at the interfaces (SectionBuilder, 2002), with very few exceptions of scientific programs (Debard/
RDM5.01, 1997). Finally, the BEM has not yet been used for the solution of the aforementioned
problem.

In this paper a boundary element method is developed for the solution of the general transverse shear
loading problem of composite beams of arbitrary constant cross-section. The composite beam consists
of materials in contact, each of which can surround a finite number of inclusions. The materials have dif-
ferent elasticity and shear moduli with same Poisson�s ratio and are firmly bonded together. The shear load-
ing is applied at the shear center of the cross-section, avoiding in this way the induction of a twisting
moment. The formulation of the problem follows the governing equations presented in Pilkey (2002).
Two boundary value problems that take into account the effect of Poisson�s ratio are formulated with
respect to stress functions and solved employing a pure BEM approach, that is only boundary discretiza-
tion is used. The evaluation of the transverse shear stresses at any interior point is accomplished by direct
differentiation of these stress functions, while both the coordinates of the shear center and the shear defor-
mation coefficients are obtained from these functions using only boundary integration. The essential fea-
tures and novel aspects of the present formulation are summarized as follows.

(i) All basic equations are formulated with respect to an arbitrary coordinate system, which is not
restricted to the principal axes.

(ii) The boundary conditions at the interfaces between different material regions have been considered.
(iii) There is no need of splitting the stress function into the sum of two alternate cross-section functions

leading to resolved shear stresses. A stress function is introduced, which fulfils the equilibrium and
compatibility equations and from which the transverse shear stresses at any interior point are obtained
by direct differentiation.

(iv) The shear deformation coefficients are evaluated using an energy approach instead of Timoshenko�s
(Timoshenko and Goodier, 1984) and Cowper�s (Cowper, 1966) definitions, for which several authors
(Schramm et al., 1994; Schramm et al., 1997) have pointed out that one obtains unsatisfactory results
or definitions given by other researchers (Stephen, 1980; Hutchinson, 2001), for which these factors
take negative values.
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(v) Finite element methods require the whole cross-section to be discretized into area elements and are
also limited with respect to the shape (distortion) of the elements. BEM solutions require only bound-
ary discretization resulting in line or parabolic elements instead of area elements of the FEM solu-
tions, while a small number of line elements are required to achieve high accuracy.

(vi) The effect of the material�s Poisson ratio m is taken into account.
(vii) The proposed method can be efficiently applied to homogeneous and composite beams of thin walled

cross-section and to laminated composite beams, without the restrictions of the �refined models�.

Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and
the range of applications of the developed method. The accuracy of the proposed shear deformation coef-
ficients compared with those obtained from a 3-D FEM solution of the �exact� elastic beam theory (Fatmi
and Zenzri, 2004) is remarkable.
2. Statement of the problem

Consider a prismatic beam of length L with an arbitrarily shaped composite cross-section consisting of
materials in contact, each of which can surround a finite number of inclusions, with modulus of elasticity
Ej, shear modulus Gj and common Poisson�s ratio m, occupying the regions Xj (j = 1,2, . . .,K) of the y, z
plane (Fig. 1). The materials of these regions are firmly bonded together and are assumed homogeneous,
isotropic and linearly elastic. Let also the boundaries of the nonintersecting regions Xj be denoted by Cj

(j = 1,2, . . .,K). These boundary curves are piecewise smooth, i.e. they may have a finite number of corners.
Without loss of generality, it may be assumed that the beam end with centroid at point C is fixed, while the
x-axis of the coordinate system is the line joining the centroids of the cross-sections.

When the beam is subjected to torsionless bending arising from a concentrated load Q applied at the
shear center S of its free end composite cross-section, at a distance x from the fixed end, the internal forces
are the shear forces Qy, Qz being the components of the concentrated load Q along y and z axes, respec-
tively and the bending moments My, Mz given as
My ¼ �Qz L� xð Þ Mz ¼ Qy L� xð Þ ð1a; bÞ
Taking into account that the beam is not subjected to external axial centroidal forces and following the
assumption that plane sections normal to the axis of a line member before deformation remain plane after
deformation, the normal component of stress acting on the beam composite cross-section is given as
rxxð Þj ¼
Ej

E1

� MyIyz þMzIyy
IyyIzz � I2yz

 !
y þ MyIzz þMzIyz

IyyIzz � I2yz

 !
z

" #
ð2Þ
where
Iyy ¼
XK
j¼1

Ej

E1

Z
Xj

z2 dXj I zz ¼
XK
j¼1

Ej

E1

Z
Xj

y2 dXj Iyz ¼
XK
j¼1

Ej

E1

Z
Xj

yzdXj ð3a; b; cÞ
are the moments of inertia with respect to y and z axes and the product of inertia of the composite cross-
section, respectively. Substituting Eq. (1a,b) into Eq. (2) the normal component of stress can be written as
rxxð Þj ¼
Ej

E1

L� x

IyyIzz � I2yz
Qz yIyz � zIzz
� �

þ Qy zIyz � yIyy
� �	 
" #

ð4Þ



(a)

(b)

Fig. 1. Prismatic beam subjected to torsionless bending (a) and two dimensional region X occupied by the composite cross-section (b).
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Following the Saint–Venant�s assumption that the stress components (ryy)j, (rzz)j and (syz)j are negligibly
small, the state of stress will be determined by evaluating the transverse (direct) shear stress components
(sxy)j and (sxz)j. Neglecting the body forces the last two equations of equilibrium of the three-dimensional
elasticity can be written as
o sxy
� �

j

ox
¼ 0

o sxzð Þj
ox

¼ 0 ð5a; bÞ
leading to the conclusion that the shear stress distributions are functions of y and z, that is they are the same
over any cross-section. The evaluation of these distributions will be accomplished by regarding the beam
subjected separately to Qy and Qz shear forces and obtaining the arising shear stress components by
superposition.

It is worth here noting that in the most general case of a composite cross-section with materials of dif-
ferent Poisson�s ratios, the problem of torsionless bending becomes considerably more complicated, due to
the fact that in this case the assumption of negligibly small stress components (ryy)j, (rzz)j and (syz)j is not
correct (Muskhelishvili, 1963). However, having in mind that the values of the Poisson�s ratios even for
materials with significantly different elastic moduli are almost the same it follows that the aforementioned
restriction is realistic.
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Thus, considering the beam subjected only to Qz shear force the first equation of equilibrium may be
written as
o sxy
� �

j

oy
þ
o sxzð Þj
oz

¼ Ej

E1

Qz

IyyIzz � I2yz
yIyz � zIzz
� �

ð6Þ
Using Hooke�s stress–strain equations the resulting strain components satisfy identically four of the com-
patibility conditions. The rest two conditions using Eq. (4) for Qy = 0 can be written as
o

oy

o sxzð Þj
oy

�
o sxy
� �

j

oz

 !
¼ Ej

E1

mQzIzz

1þ mð Þ IyyIzz � I2yz
� � ð7aÞ

o

oz

o sxzð Þj
oy

�
o sxy
� �

j

oz

 !
¼ Ej

E1

mQzIyz

1þ mð Þ IyyIzz � I2yz
� � ð7bÞ
Assuming a stress function (U(y,z))j having continuous partial derivatives up to the third order such that
the two compatibility conditions (7a,b) to be identically satisfied, the transverse shear stress components
(sxy)j, (sxz)j and the resultant shear stress (sX)j in the regions Xj (j = 1,2, . . .,K) are expressed as
sxy
� �

j
¼ Ej

Qz

B
oU
oy


 �
j

� dy

" #
ð8aÞ

sxzð Þj ¼ Ej
Qz

B
oU
oz


 �
j

� dz

" #
ð8bÞ

sXð Þj ¼ sxy
� �2

j
þ sxzð Þ2j

h i1=2
ð8cÞ
where dy, dz are the y, z components of the vector d defined by
d ¼ dy iy þ dziz ¼ m Izzyz� Iyz
y2 � z2

2


 �� �
iy þ �m Izz

y2 � z2

2
þ Iyzyz


 �� �
iz ð9Þ
in which iy,iz denote the unit vectors along the y and z axes and B is defined as
B ¼ E1D ¼ E12 1þ mð Þ IyyI zz � I2yz
� �

ð10Þ
depending on the moduli of elasticity, the Poisson�s ratio and the cross-section geometry. Substituting Eqs.
(8a,b) in Eq. (6), the partial Poisson type differential equation governing the stress function (U(y,z))j is ob-
tained as
r2U
� �

j
¼ 2 Iyzy � Izzz
� �

in Xj ðj ¼ 1; 2; . . . ;KÞ ð11Þ
where ($2)j � (o2/oy2)j + (o2/oz2)j is the Laplace operator and X ¼
SK

j¼1Xj denotes the whole region of the
composite cross-section.

The boundary conditions of the aforementioned stress function will be derived from the following phys-
ical considerations:

• The traction vector in the direction of the normal vector n vanishes on the free surface of the beam, that is
sxnð Þj ¼ sxy
� �

j
ny þ sxzð Þjnz ¼ 0 ð12aÞ
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• The traction vectors in the direction of the normal vector n on the interfaces separating the j and i dif-
ferent materials are equal in magnitude and opposite in direction, that is
sxnð Þj ¼ sxnð Þi or sxy
� �

j
ny þ sxzð Þjnz ¼ sxy

� �
i
ny þ sxzð Þinz ð12bÞ
• The displacement components remain continuous across the interfaces, since it is assumed that the mate-
rials are firmly bonded together

where ny = cosb, nz = sinb are the direction cosines of the normal vector n to the boundaries Cj

(j = 1,2, . . .,K), with b ¼ dy; n (see Fig. 1). It is worth noting that on both sides of the equality of (12b)
the normal vector n points in one and the same direction, while the third physical consideration ensures
the continuity of the stress function (U(y,z))j inside the region Xj (j = 1,2, . . .,K) as well as across the bound-
aries separating different materials ((U)j = (U)i).

Substituting Eqs. (8a,b) in Eqs. (12a,b), the Neumann type boundary condition of the stress function can
be written as
Ej
oU
on


 �
j

� Ei
oU
on


 �
i

¼ Ej � Ei

� �
n � d on Cj ðj ¼ 1; 2; . . . ;KÞ ð13Þ
where Ei is the modulus of elasticity of the Xi region at the common part of the boundaries of Xj and Xi

regions, or Ei = 0 at the free part of the boundary of Xj region, while (o/on)j � ny(o/oy)j + nz(o/oz)j denotes
the directional derivative normal to the boundary Cj. The vector n normal to the boundary Cj is positive if it
points to the exterior of the Xj region. It is worth here noting that the normal derivatives across the interior
boundaries vary discontinuously.

Similarly, considering the beam subjected only to Qy shear force and assuming the stress function
(H(y,z))j having continuous partial derivatives up to the third order such that all the compatibility condi-
tions to be identically satisfied, the transverse shear stress components sxy, sxz are expressed as
sxy
� �

j
¼ Ej

Qy

B
oH
oy


 �
j

� ey

" #
ð14aÞ

sxzð Þj ¼ Ej
Qy

B
oH
oz


 �
j

� ez

" #
ð14bÞ
where ey, ez are the y, z components of the vector e defined by
e ¼ ey iy þ eziz ¼ m Iyy
y2 � z2

2
� Iyzyz


 �� �
iy þ m Iyyyzþ Iyz

y2 � z2

2


 �� �
iz ð15Þ
Substituting Eqs. (14a,b) in the first equation of equilibrium of the three-dimensional elasticity and in the
boundary condition (12a,b) the following Neumann problem for the stress function (H(y,z))j is obtained as
r2H
� �

j
¼ 2 Iyzz� Iyyy
� �

in Xj ðj ¼ 1; 2; . . . ;KÞ ð16Þ

Ej
oH
on


 �
j

� Ei
oH
on


 �
i

¼ Ej � Ei

� �
n � e on Cj ðj ¼ 1; 2; . . . ;KÞ ð17Þ
Having in mind that the shear center S is defined as the point of the cross-section at which the torsional
moment arising from the transverse shear stresses vanishes, the coordinates {yS,zS} of this point with re-
spect to the system of axes with origin the cross-section centroid can be derived from the condition
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ySQz � zSQy ¼ Mx ) ySQz � zSQy ¼
XK
j¼1

Z
Xj

sxzð Þjy � sxy
� �

j
z

h i
dXj ð18Þ
For Qy = 0, after substituting Eqs. (8a,b) in Eq. (18), the yS coordinate of the shear center S can be ob-
tained from
yS ¼
1

B

XK
j¼1

Z
Xj

Ej y
oU
oz


 �
j

� z
oU
oy


 �
j

� ydz þ zdy

" #
dXj ð19Þ
Similarly, for Qz = 0 after substituting Eqs. (14a,b) in Eq. (18), the zS coordinate of the shear center S can
be obtained from
zS ¼
1

B

XK
j¼1

Z
Xj

Ej z
oH
oy


 �
j

� y
oH
oz


 �
j

� zey þ yez

" #
dXj ð20Þ
Eqs. (19) and (20) denote that the {yS,zS} coordinates of the shear center S are independent from shear
loading. Moreover, it can be shown that in the case of zero Poisson�s ratio, the coordinates of the shear
center S and the center of twist M coincide, that is
yS ¼ yM zS ¼ zM ð21a; cÞ

where the equations for the coordinates {yM,zM} are given in Sapountzakis (2000). This coincidence of
these centers was first recognized by Weber (1924) by applying the Betty–Maxwell reciprocal relations.

Furthermore, the shear deformation coefficients ay, az and ayz = azy which are introduced from
the approximate formula for the evaluation of the shear strain energy per unit length (Schramm et al.,
1997)
U appr: ¼
ayQ

2
y

2AG1

þ azQ
2
z

2AG1

þ
ayzQyQz

2AG1

ð22Þ
are evaluated equating this approximate energy with the exact one given from
U exact ¼
XK
j¼1

E1

Ej

Z
Xj

sxzð Þ2j þ sxy
� �2

j

2G1

dXj ð23Þ
and are obtained for the cases {Qy 5 0,Qz = 0}, {Qy = 0,Qz 5 0} and {Qy 5 0,Qz 5 0}, respectively, as
ay ¼
1

jy
¼ A

E1D
2

XK
j¼1

Z
Xj

Ej rHð Þj � e
� �

� rHð Þj � e
� �

dXj ð24aÞ

az ¼
1

jz
¼ A

E1D
2

XK
j¼1

Z
Xj

Ej rUð Þj � d
� �

� rUð Þj � d
� �

dXj ð24bÞ

ayz ¼
1

jyz
¼ A

E1D
2

XK
j¼1

Z
Xj

Ej rUð Þj � d
� �

� rHð Þj � e
� �

dXj ð24cÞ
where
A ¼
XK
j¼1

Gj

G1

Z
Xj

dXj ð25Þ
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is the area of the composite cross-section, D is defined from Eq. (10), while ($)j � iy(o/oy)j + iz(o/oz)j is a
symbolic vector. Employing the shear deformation coefficients ay, az, ayz using Eqs. (24a,b,c) we can define
the cross-section shear rigidities of the Timoshenko�s beam theory as
G1Asy ¼ G1A=ay ð26aÞ

G1Asz ¼ G1A=az ð26bÞ

G1Asyz ¼ G1A=ayz ð26cÞ
In the case of an asymmetric cross-section the principal shear axes, defined as (Schramm et al., 1997)
tan 2uS ¼ 2ayz
ay � az

ð27Þ
do not coincide with the principal bending ones, defined by the engineering beam theory. Due to this dif-
ference, the deflection components in the y and z directions are in general coupled, even if the system of axes
of the cross-section coincides with the principal bending one (Pilkey, 2002). If the cross-section is symmetric
about an axis, the principal shear axes system coincides with the principal bending one. In this case, the
deflection components with respect to the principal directions are not coupled any more (ayz = azy = 0
and Iyz = Izy = 0).

It is worth here noting that the reduction of Eqs. (2) and (3a,b,c) using the modulus of elasticity E1 and
of Eqs. (22), (23), (25) and (26a,b,c) using the shear modulus G1 of the first material, could be achieved
using any other material, considering it as reference material.

Finally, considering the beam subjected only to Qz shear force the shear stress components at points on
the boundary Cj (j = 1,2, . . .,K) are evaluated from the established values of (U)j and (oU/on)j using the fol-
lowing relations
sxnð Þj ¼ Ej
Qz

B
oU
on


 �
j

� n � d
" #

ð28aÞ

sxtð Þj ¼ Ej
Qz

B
oU
ot


 �
j

þ dy sin b � dz cos b

" #
ð28bÞ

sCð Þj ¼ sxnð Þ2j þ sxtð Þ2j
h i1=2

ð28cÞ
where the tangential derivative (oU/ot)j = (oU/os)j is computed numerically using appropriately central,
backward or forward differences. It is worth noting that (sxn)j is the bond stress at the interface part of
the boundary Cj, while (sC)j is the resultant boundary shear stress.

Similarly, considering the beam subjected only to Qy shear force the shear stress components at points on
the boundary Cj (j = 1,2, . . .,K) are evaluated from the established values of (H)j and (oH/on)j as
sxnð Þj ¼ Ej
Qy

B
oH
on


 �
j

� n � e
" #

ð29aÞ

sxtð Þj ¼ Ej
Qy

B
oH
ot


 �
j

þ ey sin b � ez cos b

" #
ð29bÞ
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3. Integral representations––numerical solution

According to the precedent analysis, the shear problem of a composite beam reduces in establishing the
stress functions (U(y,z))j and (H(y,z))j having continuous partial derivatives up to the third order, satisfying
the governing equations (11) and (16) inside the regions Xj (j = 1,2, . . .,K) of the y, z plane and the bound-
ary conditions (13) and (17) on the corresponding boundary Cj, respectively.

The numerical solution of the boundary value problems described by Eqs. (11), (13) and (16), (17) is sim-
ilar. For this reason, in the following we will analyze the solution of the problem of Eqs. (11) and (13) not-
ing any alteration or addition for the problem of Eqs. (13) and (17).

The evaluation of the stress function (U(y,z))j is accomplished using BEM as this is presented in
Sapountzakis (2000). According to this method, the Green identity
Z

Xj

W r2U
� �

j
� Uð Þjr2W

� �
dXj ¼

Z
Cj

W
oU
on


 �
j

� Uð Þj
oW
on

 !
ds ð30Þ
when applied to the stress function (U)j and to the fundamental solution
W ¼ 1

2p
ln rðP ;QÞ P ;Q 2 Xj ð31Þ
which is a particular singular solution of the equation
r2W ¼ dðP ;QÞ ð32Þ

yields
e UðPÞð Þj ¼
Z

Xj

ln r r2UðQÞ
� �

j
dXQ þ

Z
Cj

UðqÞð Þj
cos a
r

� oUðqÞ
on


 �
j

ln r

 !
dsq ð33Þ
with a ¼ cr; n; r = jP � qj, P,Q 2 Xj, q 2 Cj (j = 1,2, . . .,K) and e = 2p, p or 0 depending on whether the
point P is inside the region Xj, P � p on the boundary Cj or P outside Xj, respectively. Note that the bound-
ary has been assumed to be smooth at the point p 2 Cj. Using Eq. (11) the integral representation (33) is
written as
e UðPÞð Þj ¼
Z

Xj

f ðQÞ ln rdXQ þ
Z

Cj

UðqÞð Þj
cos a
r

� oUðqÞ
on


 �
j

ln r

 !
dsq ð34Þ
where the function f is defined as
f ¼ 2 Iyzy � Izzz
� �

ð35Þ
Applying once more the Green identity given by (30) for the function f satisfying the following equation
r2f ¼ 0 ð36Þ

and for the function U defined as
U ¼ 1

8p
r2 ln r � 1ð Þ ð37Þ
satisfying the following equation
r2U ¼ W ð38Þ

the domain integral of Eq. (34) can be converted into a line integral along the boundaries of the cross-sec-
tion and the integral representation (34) is written as
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e UðP Þð Þj ¼
1

4

Z
Cj

f ðqÞ 2 ln r � 1ð Þr cos a� of ðqÞ
on

ln r � 1ð Þr2

 �

dsq

þ
Z

Cj

UðqÞð Þj
cos a
r

� oUðqÞ
on


 �
j

ln r

 !
dsq ð39Þ
In Eq. (39) the subscript q in the arc element dsq indicates that point q varies along the boundaries of the
cross-section during integration and differentiation, while the point P (or p) is retained constant. The values
of the function (U(P))j inside the region Xj can be established from the integral representation (39) if (U)j
and its derivative (oU/on)j were known on the boundaries Cj. Thus,
UðP Þð Þj ¼
1

8p

Z
Cj

f ðqÞ 2 ln r � 1ð Þr cos a� of ðqÞ
on

ln r � 1ð Þr2

 �

dsq

þ 1

2p

Z
Cj

UðqÞð Þj
cos a
r

� oUðqÞ
on


 �
j

ln r

 !
dsq; P 2 Xj; q 2 Cj ð40Þ
The unknown boundary quantities (U)j and (oU/on)j can be evaluated from the solution of a boundary inte-
gral equation on the boundary Cj, which is derived working as follows.

We consider a point p lying on the boundary Cj (j = 1,2, . . .,K). For a point q lying on the boundary Cj of
the region Xj Eq. (39) may be written as
p UðpÞð Þj ¼
1

4

Z
Cj

f ðqÞ 2 ln r � 1ð Þr cos a� of ðqÞ
on

ln r � 1ð Þr2

 �

dsq

þ
Z

Cj

UðqÞð Þj
cos a
r

� oUðqÞ
on


 �
j

ln r

 !
dsq; q 2 Cj ð41Þ
Similarly, for a point q lying on the part of the boundary Ck of the region Xk, which is an interface between
regions Xj and Xk, Eq. (39) may be written as
p UðpÞð Þj ¼
1

4

Z
Ck

�f ðqÞ 2 ln r � 1ð Þr cos aþ of ðqÞ
on

ln r � 1ð Þr2

 �

dsq

þ
Z

Ck

� UðqÞð Þk
cos a
r

þ oUðqÞ
on


 �
k

ln r

 �

dsq; q 2 Ck ð42Þ
Moreover, for a point q lying on the boundaries Ci (i = 1,2, . . .,K, i5 k) Eq. (39) yields
0 ¼ 1

4

Z
Ci

�f ðqÞ 2 ln r � 1ð Þr cos aþ of ðqÞ
on

ln r � 1ð Þr2

 �

dsq

þ
Z

Ci

� UðqÞð Þi
cos a
r

þ oUðqÞ
on


 �
i

ln r

 �

dsq; q 2 Ci ð43Þ
Notice that the sign in Eqs. (42) and (43) is reversed, since the unit vector normal to the boundary is
negative.

Multiplying Eq. (41) by Ej, Eq. (42) by Ek, Eq. (43) by Ei (i = 1,2, . . .,K, i5 k) and adding them yields
p UðpÞð Þj Ej þ Ek

� �
¼ 1

4

XK
j¼1

Z
Cj

Ej � Ei

� �
f ðqÞ 2 ln r � 1ð Þr cos a� of ðqÞ

on
ln r � 1ð Þr2


 �
dsq

þ
XK
j¼1

Z
Cj

Ej � Ei

� �
UðqÞð Þj

cos a
r

� Ei
oUðqÞ
on


 �
j

� Ej
oUðqÞ
on


 �
i

" #
ln r

" #
dsq ð44Þ
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Using Eq. (13) and substituting Eq. (34) in Eq. (44), the following singular boundary integral equation is
obtained
p UðpÞð Þj Ej þ Ek

� �
¼ 1

2

XK
j¼1

Z
Cj

Ej � Ei

� �
Iyzy � I zzz
� �

2 ln r � 1ð Þr cos a� Iyz cos b � Izz sin b
� �

ln r � 1ð Þr2
	 


dsq

þ
XK
j¼1

Z
Cj

Ej � Ei

� �
UðqÞð Þj

cos a
r

� n � dð Þ ln r
h i

dsq ð45Þ
It is worth here noting that in Eq. (45) the point p lies on the boundary Cj (j = 1,2, . . .,K), which is an
interface between regions Xj and Xk, while the point q varies along the boundary Cj (j = 1,2, . . .,K), which is
an interface between regions Xj and Xi, while Ek = Ei = 0 in the case Cj is a free boundary. Moreover, in Eq.
(45) the normal n to the boundary Cj points to the exterior of the region Xj and Cj is traveled only once.

For any given geometry of the composite cross-section the stress function (U(s))j on the boundary Cj

(j = 1,2, . . .,K) is obtained from the solution of the boundary integral equation (45). Thus, using constant
boundary elements to approximate the line integrals along the boundaries and a collocation technique the
following linear system of simultaneous algebraic equations is established
A½ 
 Uf g ¼ Cf g ð46Þ

where
Uf gT ¼ Uð Þ1
� �

1
Uð Þ1

� �
2

� � � Uð Þ1
� �

M
Uð Þ2

� �
Mþ1

� � � Uð ÞK
� �

N

n o
ð47Þ
are the values of the boundary quantities (U)j at the nodal points of the N boundary elements. Moreover, in
Eq. (46) [A] and {C} are square N · N and column N · 1 known coefficient matrices, respectively. From the
solution of the system of simultaneous algebraic equations (46) the values of the stress function (U)j for all
boundary nodal points are established. Notice that the stress function (U)j is determined exactly apart from
an arbitrary constant term (Neumann problem). However, the stress components, the coordinates of the
shear center and the shear deformation coefficients are not influenced by this arbitrary constant, since
according to Eqs. (8a,b), (19), (20) and (24a,b,c) only the derivatives of (U)j are required for the evaluation
of these quantities.

The derivatives of (U)j with respect to y and z at any interior point of the region Xj, for the calculation of
the stress resultants (Eqs. (8a,b)) are computed differentiating the integral representation (Eq. 40) of the
stress function (U)j as
oUðP Þ
oy


 �
j

¼ 1

2p

Z
Cj

UðqÞð Þj
cosðx � aÞ

r2
þ oUðqÞ

on


 �
j

cosx
r

 !
dsq

þ 1

4p

Z
Cj

I zzz� Iyzy
� �

2 cosx cos aþ 2 ln r � 1ð Þ cos bð Þ
�

� Izz sin b � Iyz cos b
� �

2 ln r � 1ð Þr cosx
�
dsq ð48aÞ

oUðP Þ
oz


 �
j

¼ 1

2p

Z
Cj

UðqÞð Þj
sinðx � aÞ

r2
þ oUðqÞ

on


 �
j

sinx
r

 !
dsq

þ 1

4p

Z
Cj

I zzz� Iyzy
� �

2 sinx cos aþ 2 ln r � 1ð Þ sin bð Þ
�

� I zz sin b � Iyz cos b
� �

2 ln r � 1ð Þr sinx
�
dsq ð48bÞ
with r = jP � qj, P 2 Xj, q 2 Cj and x ¼ cx; r.
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The derivative (oU/on)j for the evaluation of the shear stresses is known only on the free parts of the
boundaries Cj. Its values on the interfaces can be established from Eq. (13) and the solution of the singular
integral equation (41) using the boundary values of (U)j obtained from the solution of Eq. (45).

Similarly, for any given geometry of the composite cross-section the stress function (H(s))j on the bound-
aries Cj (j = 1,2, . . .,K) is obtained from the solution of the following singular boundary integral equation
p HðpÞð Þj Ej þ Ek

� �
¼ 1

2

XK
j¼1

Z
Cj

Ej � Ei

� �
Iyzz� Iyyy
� �

2 ln r � 1ð Þr cos a� Iyz sin b � Iyycosb
� �

ln r � 1ð Þr2
	 


dsq

þ
XK
j¼1

Z
Cj

Ej � Ei

� �
HðqÞð Þj

cos a
r

� n � eð Þ ln r
h i

dsq ð49Þ
while the values of the derivative (oH/on)j can be established from Eq. (17) and the solution of the following
singular boundary integral equation
p HðpÞð Þj ¼
Z

Cj

HðqÞð Þj
cos a
r

� oHðqÞ
on


 �
j

ln r

 !
dsq

þ 1

2

Z
Cj

I yzz� Iyyy
� �

2 ln r � 1ð Þr cos a� Iyz sin b � Iyy cos b
� �

ln r � 1ð Þr2
� �

dsq ð50Þ
using the boundary values of (H)j obtained from the solution of Eq. (49). Moreover, the values of the func-
tion (H(P))j at any interior point of the region Xj can be established from the following integral represen-
tation as
HðP Þð Þj ¼
1

2p

Z
Cj

HðqÞð Þj
cos a
r

� oHðqÞ
on


 �
j

ln r

 !
dsq

þ 1

4p

Z
Cj

I yzz� Iyyy
� �

2 ln r � 1ð Þr cos a� Iyz sin b � Iyy cos b
� �

ln r � 1ð Þr2
� �

dsq ð51Þ
while, the derivatives of (H)j with respect to y and z axis from the following integral representations
oHðP Þ
oy


 �
j

¼ 1

2p

Z
Cj

HðqÞð Þj
cosðx � aÞ

r2
þ oHðqÞ

on


 �
j

cosx
r

 !
dsq

þ 1

4p

Z
Cj

I yyy � Iyzz
� �

2 cosx cos aþ 2 ln r � 1ð Þ cos bð Þ
�

� Iyy cos b � Iyz sin b
� �

2 ln r � 1ð Þr cosx
�
dsq ð52aÞ

oHðP Þ
oz


 �
j

¼ 1

2p

Z
Cj

HðqÞð Þj
sinðx � aÞ

r2
þ oHðqÞ

on


 �
j

sinx
r

 !
dsq

þ 1

4p

Z
Cj

I yyy � Iyzz
� �

2 sinx cos aþ 2 ln r � 1ð Þ sin bð Þ
�

� Iyy cos b � Iyz sin b
� �

2 ln r � 1ð Þr sinx
�
dsq ð52bÞ
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Moreover, since the torsionless bending problem of beams is solved by the BEM, the domain integrals in
Eqs. (3a,b,c), (19), (20), (24a,b,c) and (25) have to be converted to boundary line ones, in order to maintain
the pure boundary character of the method. This is accomplished using the Green identity given in Eq. (30)
and the Gauss theorem given by the following relations
Z

Xj

g
oh
oy

dXj ¼ �
Z

Xj

h
og
oy

dXj þ
Z

Cj

hg cos bds ð53aÞ

Z
Xj

g
oh
oz

dXj ¼ �
Z

Xj

h
og
oz

dXj þ
Z

Cj

hg sin bds ð53bÞ
Thus, using the Gauss theorem for the moments of inertia, the product of inertia and the cross-section area
we can write the following relations
Iyy ¼
1

E1

XK
j¼1

Z
Cj

Ej � Ei

� �
yz2 cos b
� �

ds ð54aÞ

I zz ¼
1

E1

XK
j¼1

Z
Cj

Ej � Ei

� �
zy2 sin b
� �

ds ð54bÞ

Iyz ¼
1

2E1

XK
j¼1

Z
Cj

Ej � Ei

� �
zy2 cos b
� �

ds ð54cÞ

A ¼ 1

2G1

XK
j¼1

Z
Cj

Gj � Gi

� �
y cos b þ z sin bð Þds ð54dÞ
while the {yS,zS} coordinates of the shear center S are obtained from the calculation of the following
boundary line integrals
yS ¼
1

4B

XK
j¼1

Z
Cj

Ej � Ei

� �
mIzz

1

2
y4 þ y2z2


 �
cos b



þmIyz

1

2
z4 þ y2z2


 �
sin b � 4 Uð Þj z cos b � y sin bð Þ

�
ds ð55aÞ

zS ¼
1

4B

XK
j¼1

Z
Cj

Ej � Ei

� �
mIyy

1

2
z4 þ y2z2


 �
sin b þ mIyz

1

2
y4 þ y2z2


 �
cos b



þ4 Hð Þj z cos b � y sin bð Þ

�
ds ð55bÞ
Moreover, applying the Gauss theorem for the functions {(H)j,o(H)j/oy}, {(H)j,o(H)j/oz}, {(U)j,o(U)j/oy},
{(U)j,o(U)j/oz}, {(H)j,o(U)j/oy} and {(H)j,o(U)j/oz} the shear deformation coefficients ay, az, ayz = azy are
obtained as
ay ¼
A

E1D
2

4m þ 2ð Þ IyyIHy � IyzIHz

� �
þ 1

4
m2 I2yy þ I2yz
� �

Ied � IHe


 �
ð56aÞ
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az ¼
A

E1D
2

4m þ 2ð Þ IzzIUz � IyzIUy

� �
þ 1

4
m2 I2zz þ I2yz
� �

Ied � IUd


 �
ð56bÞ
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Fig. 2. Composite circular tube cross-section of the cantilever beam of Example 1.

1
ant transverse shear stresses at points A and B (kPa) for different Poisson�s ratios of the composite circular tube cross-section of
le 1

E3/E2 ðsAXÞ2 ðsBXÞ1
Present study Muskhelishvili (1963) Present study Muskhelishvili (1963)

1 8.949181 8.952465 5.514528 5.514719
2 7.642280 – 4.628520 –
2 6.539870 6.542557 5.106785 5.108449
3 5.946931 – 4.596984 –
3 5.136228 5.138963 4.720502 4.722953
4 4.794630 – 4.375467 –
4 4.225295 4.228171 4.435614 4.438568
5 4.002365 – 4.179056 –
5 3.587670 3.590691 4.224006 4.227311
6 3.430458 – 4.021596 –

1 8.260418 8.263814 5.090165 5.090510
2 7.116921 – 4.306791 –
2 6.036552 6.039283 4.713688 4.715491
3 5.522474 – 4.266888 –
3 4.740928 4.743658 4.357084 4.359649
4 4.445957 – 4.055912 –
4 3.900092 3.902927 4.094092 4.097140
5 3.708003 – 3.870661 –
5 3.311531 3.314484 3.898749 3.902133
6 3.176242 – 3.722733 –
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ayz ¼
A

E1D
2

2m þ 2ð Þ IzzIHz � IyzIHy

� �
þ 2m IyyIUy � IyzIUz

� �
� 1

4
m2 Iyy þ Izz
� �

IyzIed � IUe


 �
ð56cÞ
where IHe, IUe and IUd are boundary integrals given from
IHe ¼
XK
j¼1

Z
Cj

Ej � Ei

� �
Hð Þj n � eð Þds ð57aÞ

IUe ¼
XK
j¼1

Z
Cj

Ej � Ei

� �
Uð Þj n � eð Þds ð57bÞ
2
inate of the shear center yS (cm) with respect to the geometric center of the circles of the composite circular tube cross-section of
le 1

E3/E2 m = 0 m = 0.3

2 �2.7997 �2.5323
3 �2.0257 �1.8097
4 �1.5950 �1.4189
5 �1.3174 �1.1696
6 �1.1227 �0.9957

3
correction factors for different Poisson�s ratios of the composite circular tube cross-section of Example 1

E3/E2 jy jz

1 0.681859 (0.681818) (Cowper, 1966)
(0. 681818) (Renton, 1997)

0.681859 (0.681818) (Cowper, 1966)
(0. 681818) (Renton, 1997)

2 0.640786 0.657460
2 0.641179 0.641179
3 0.619113 0.626847
3 0.616298 0.616298
4 0.602910 0.607428
4 0.600434 0.600434
5 0.591500 0.594473
5 0.589558 0.589558
6 0.583187 0.585294

1 0.679233 (0.714024) (Cowper, 1966)
(0.679188) (Renton, 1997)

0.679233 (0.714024) (Cowper, 1966)
(0.679188) (Renton, 1997)

2 0.638623 0.655198
2 0.639397 0.639397
3 0.617548 0.625189
3 0.614919 0.614919
4 0.601652 0.606107
4 0.599284 0.599284
5 0.590427 0.593355
5 0.588554 0.588554
6 0.582234 0.584310
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IUd ¼
XK
j¼1

Z
Cj

Ej � Ei

� �
Uð Þj n � dð Þds ð57cÞ
while IHy, IHz, IUy, IUz and Ied are domain integrals given from
IHy ¼
XK
j¼1

Z
Xj

Ej Hð Þjy dXj ð58aÞ
Distributions of the resultant transverse shear stress (sX)j in the interior of the composite circular tube cross-section of Example
m = 0.0, E1/E2 = 1, E3/E2 = 2 and for (a) Qz = �1 kN and (b) Qy = +1 kN.
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IHz ¼
XK
j¼1

Z
Xj

Ej Hð ÞjzdXj ð58bÞ

IUy ¼
XK
j¼1

Z
Xj

Ej Uð Þjy dXj ð58cÞ

IUz ¼
XK
j¼1

Z
Xj

Ej Uð ÞjzdXj ð58dÞ

Ied ¼
XK
j¼1

Z
Xj

Ej y4 þ z4 þ 2y2z2
� �

dXj ð58eÞ
which can be converted into boundary integrals by applying the Green identity for the functions {(H)j,z
3},

{(H)j,y
3}, {(U)j,z

3} and {(U)j,y
3} as
C

z,

y

E1

E2

0.3m 

0.
4m

0.05m 

O y∼

∼z

Fig. 4. Composite cross-section of the cantilever beam of Example 2.

4
inate ~zC (cm) of the centroid C and resultant transverse shear stress at this point (kPa) for two different cases of concentrated
g and Poisson�s ratios of the composite cross-section of Example 2

~zC ðsCXÞ2
Qz = �1 kN Qy = + 1 kN

m = 0 m = 0.33 m = 0 m = 0.33

20.0 12.498998 (12.5) (EBT) 11.938572 12.499163 (12.5) (EBT) 11.071304
18.9706 9.199799 8.728094 10.591865 9.577383
18.4091 7.355529 6.953806 9.505636 8.702415
18.0556 6.153481 5.804804 8.735040 8.065876
17.8125 5.300311 4.992646 8.134598 7.559545
17.5198 4.235002 3.982239 7.287670 6.829300
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IHy ¼
1

6

XK
j¼1

Z
Cj

Ej � Ei

� �
Iyzy3z2 � 2Iyyy4z
� �

sin b þ 3 Hð Þj cos b � y n � eð Þ
� �

y2
h i

ds ð59aÞ
Distributions of the resultant transverse shear stress (sX)j in the interior of the composite cross-section of Example 2, for
3, E1/E2 = 3 and for (a) Qz = �1 kN and (b) Qy = +1 kN.



Table 5
Coordinate zS (cm) of the shear center for different Poisson�s ratios of the composite cross-section of Example 2

E1/E2 zS(�zM) for m = 0 zS for m = 0.33

1 0.00 0.00
2 �0.5209 �0.4634
3 �1.3516 �1.2773
4 �2.2795 �2.2026
5 �3.2207 �3.1466
6.837 �4.8810 �4.8155

(�4.89) (Debard, 1997, RDM 5.01 Soft)
(�4.90) (Fatmi and Zenzri, 2004)

Table 6
Shear correction factors for different Poisson�s ratios of the composite cross-section of Example 2

E1/E2 jy jz

m = 0 m = 0.33 m = 0 m = 0.33

1 0.833427 0.817572 0.833412 0.831403
(0.833)
(SectionBuilder 8.1 Soft)

(0.833)
(SectionBuilder 8.1 Soft)

2 0.709248 0.701529 0.800961 0.799247
3 0.615573 0.611080 0.776744 0.775299
4 0.547215 0.544287 0.759048 0.757802
5 0.495951 0.493891 0.745721 0.744624
6.837 0.429505 0.428269 0.728338 0.727431

(0.49442)
(SectionBuilder 8.1 Soft)

(0.428) (Fatmi and Zenzri, 2004) (0.74757)
(SectionBuilder 8.1 Soft)

(0.727) (Fatmi and Zenzri, 2004)

(0.430)
(Debard, 1997, RDM 5.01 Soft)

(0.729)
(Debard, 1997, RDM 5.01 Soft)

(0.40519) (Nouri and Gay, 1994) (0.70077) (Nouri and Gay, 1994)

C

z

y

E1

E2

0.25m

0.
25

m
0.

25
m

0.25m

Fig. 6. L-shaped composite cross-section of the cantilever beam of Example 3.
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IHz ¼
1

6

XK
j¼1

Z
Cj

Ej � Ei

� �
2Iyzz4y � Iyyz3y2
� �

cos b þ 3 Hð Þj sin b � z n � eð Þ
� �

z2
h i

ds ð59bÞ

IUy ¼
1

6

XK
j¼1

Z
Cj

Ej � Ei

� �
2Iyzy4z� Izzy3z2
� �

sin b þ 3 Uð Þj cos b � y n � dð Þ
� �

y2
h i

ds ð59cÞ

IUz ¼
1

6

XK
j¼1

Z
Cj

Ej � Ei

� �
Iyzz3y2 � 2Izzz4y
� �

cos b þ 3 Uð Þj sin b � z n � dð Þ
� �

z2
h i

ds ð59dÞ

Ied ¼
XK
j¼1

Z
Cj

Ej � Ei

� �
y4z sin b þ z4y cos b þ 2

3
y2z3 sin b


 �
ds ð59eÞ
Finally, using the Gauss theorem the coordinates of the centroid C with respect to the arbitrarily coordinate
system O~y~z are obtained from
~yC ¼
PK

j¼1

R
Cj

Ej � Ei

� �
~y~z sin bð Þds

1
2

PK
j¼1

R
Cj

Ej � Ei

� �
~y cos b þ ~z sin bð Þds

; ~zC ¼
PK

j¼1

R
Cj

Ej � Ei

� �
~y~z cos bð Þds

1
2

PK
j¼1

R
Cj

Ej � Ei

� �
~y cos b þ ~z sin bð Þds

ð60a; bÞ
4. Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a computer
program has been written and representative examples have been studied to demonstrate the efficiency, the
accuracy and the range of applications of the developed method.

Example 1. A cantilever beam of the composite circular tube cross-section shown in Fig. 2 has been
studied. In Table 1 the resultant transverse shear stresses ðsAXÞ2, ðsBXÞ1 at points A and B of the cross-section
of the beam loaded at its free end by a concentrated force Qy = +1 kN and for the Poisson�s ratios m = 0,
m = 0.3 are presented as compared wherever possible with those obtained from an analytical solution
7
ce dCS and maximum resultant transverse shear stress smax for various Poisson�s ratios of the composite cross-section of Example
ected to the concentrated load Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

z þ Q2
y

q
, with Qz = �1 kN and Qy = +1 kN

dCS (cm) smax (kPa)

m = 0 m = 0.3 m = 0 m = 0.3

6.59556 6.70703 53.2551 53.1197
(6.575) (Sauer, 1980)
6.02817 6.15889 39.9117 39.9311
5.60475 5.75888 33.7153 33.7357
5.21824 5.37945 30.0376 30.0580
4.86748 5.02780 27.5426 27.5702
4.55255 4.70848 25.7086 25.7480
4.27094 4.42106 24.2885 24.3419
4.01912 4.16294 23.1485 23.2165
3.79340 3.93092 22.2089 22.2915
3.59042 3.72184 21.4187 21.5154
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(Muskhelishvili, 1963). The accuracy of the obtained results is remarkable. Also, the resulting discrepancy
of the values of the shear stresses, arising from the different values of the Poisson�s ratio m leads to the
conclusion that the influence of this material constant cannot be ignored. Moreover, in Tables 2 and 3 the
shear center coordinate yS with respect to the geometric center of the circles and the shear correction factors
jy, jz (values in parentheses come from Cowper�s (1966) definition and from an analytical formula
developed by Renton (1997)) for various values of the Poisson�s ratio are presented, respectively. The
alteration of the shear center coordinate with the Poisson�s ratio variation is noteworthy. We remind here
the coincidence of the shear center and the center of twist, in the case of m = 0. Finally, in Fig. 3 the
distributions of the interior resultant shear stress (sX)j (j = 1,2,3) for two different cases of concentrated
loading are presented.
Fig. 7. Distributions of the resultant transverse shear stress (sC)j along the boundary of the composite cross-section of Example 3,
subjected to the concentrated load Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

z þ Q2
y

q
, with Qz = �1 kN and Qy = +1 kN, for m = 0.3 and for (a) E1/E2 = 1 and

(b) E1/E2 = 10.
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Example 2. A cantilever beam having the cross-section shown in Fig. 4 has been studied. In Table 4 the
coordinate ~zC of the centroid C with respect to the arbitrary coordinate system O~y~z and the resultant trans-
verse shear stress ðsCXÞ2 at this point (values in parentheses come from engineering beam theory (EBT) (Tim-
oshenko and Goodier, 1984)), for the Poisson�s ratios m = 0, m = 0.33 and for two different cases of
Table 8
Shear correction factors jy, jz and jyz of the composite cross-section of Example 3, for various Poisson�s ratios

E1/E2 m = 0 m = 0.3

jy jz jyz jy jz jyz

1 0.69480 0.69480 �9.39352 0.68901 0.68901 �10.4203
(0.69809) (Nastran 4.0 Soft) (0.69809) (Nastran 4.0 Soft)

2 0.63197 0.74809 �9.96204 0.62603 0.74391 �10.8879
3 0.58882 0.76979 �9.47095 0.58254 0.76650 �10.2073
4 0.56314 0.78161 �9.13537 0.55641 0.77889 �9.75711
5 0.54800 0.78912 �8.97955 0.54077 0.78680 �9.53309
6 0.53932 0.79439 �8.95006 0.53155 0.79235 �9.46158
7 0.53475 0.79833 �9.00643 0.52643 0.79651 �9.49145
8 0.53288 0.80141 �9.12245 0.52401 0.79977 �9.59073
9 0.53285 0.80391 �9.28115 0.52341 0.80240 �9.73916
10 0.53408 0.80599 �9.47129 0.52408 0.80460 �9.92353

C

z

y

E1 E2

r=0.25m

HEB300

Fig. 8. Composite cross-section of the cantilever beam of Example 4.

Table 9
Maximum resultant transverse shear stress smax for various load cases and for Poisson�s ratio m = 0.3, of the composite cross-section of
Example 4

E1/E2 smax (kPa)

Qz Qy Q

5 33.8033 28.4209 37.3976
6 39.9672 32.5527 43.5241
7 45.9167 36.3060 49.2961
8 51.6564 39.7361 54.7514
9 57.1926 42.8877 59.9221
10 62.5327 45.7976 64.8351
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concentrated loading are presented. The influence of the Poisson�s ratio m is once more verified. Moreover,
in Fig. 5 the distributions of the interior resultant shear stress (sX)j (j = 1,2,3) for two different cases of
concentrated loading are presented. Finally, in Tables 5 and 6 the shear center coordinate zS with respect
to the centroid C of the composite cross-section and the shear correction factors jy, jz for the Poisson�s
ratios m = 0 and m = 0.33 are presented, respectively, as compared wherever possible with those obtained
from 2-D FEM solutions (Debard, 1997–RDM 5.01 Soft, SectionBuilder 8.1 Soft, Nouri and Gay,
1994) and from a 3-D FEM solution (Fatmi and Zenzri, 2004) of the �exact� elastic beam theory (Ladevéze
and Simmonds, 1998). Both the accuracy of the results (in Tables 5 and 6) between BEM and 3-D FEM
solutions and the discrepancy of the results (in Table 6) between BEM and 2-D FEM (SectionBuilder
8.1 Soft), arisen from the ignorance of boundary conditions at the interfaces, are easily verified. Noting
both Table 3 of the first example and Table 6 of this example, the minor alteration of the shear correction
factors with the Poisson�s ratio variation is also verified.

Example 3. A cantilever beam having the L-shaped composite cross-section shown in Fig. 6 has been stud-
ied. In Table 7 the distance dCS between centroid C and shear center S of the composite cross-section and

the maximum resultant transverse shear stress smax for the concentrated load Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

z þ Q2
y

q
, with

Qz = �1 kN and Qy = + 1 kN for various Poisson�s ratios are presented, as compared wherever possible
with those obtained from another BEM solution (Sauer, 1980). Moreover, in Fig. 7 for the same loading
the boundary distributions of the resultant transverse shear stress (sC)j for various E1/E2 ratios and in Table
8 the shear correction factors jy, jz and jyz for various Poisson�s ratios of the composite cross-section are
presented, as compared wherever possible with those obtained from a 2-D FEM solution (Nastran 4.0
Soft). The minor alteration of both the shear deformation coefficients and the shear center coordinate with
the Poisson�s ratio variation are noteworthy.
Table 10
Shear correction factors jy, jz for Poisson�s ratio m = 0.3 of the composite cross-section of Example 4

E1/E2 jy jz

5 0.838187 0.708029
6 0.830843 0.677910
7 0.823672 0.650976
8 0.816794 0.626828
9 0.810262 0.605101
10 0.804093 0.585472

Table 11
Shear correction factors jy, jz for various homogeneous steel HEB cross-sections (m = 0.3)

HEB jy jz

BEM TTT Error (%) BEM TTT Error (%)

300 0.6876 0.7647 �11.2129 0.2166 0.3181 �46.8606
400 0.6488 0.7281 �12.2226 0.2656 0.3538 �33.2078
500 0.6220 0.7040 �13.1833 0.2961 0.3764 �27.1192
600 0.5864 0.6668 �13.7108 0.3354 0.4105 �22.3912
700 0.5487 0.6267 �14.2154 0.3771 0.4475 �18.6688
800 0.5197 0.5925 �14.0081 0.4080 0.4840 �18.6275
900 0.4907 0.5656 �15.2639 0.4360 0.5084 �16.6055
1000 0.4626 0.5399 �16.7099 0.4613 0.5312 �15.1528
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Example 4. A cantilever beam having the composite cross-section consisting of a HEB-300 (Eurocode
No 3) totally encased in a circular matrix, as shown in Fig. 8, has been studied. In Table 9 the maximum
resultant transverse shear stress smax of the composite cross-section subjected to various load cases

(Qz = �1 kN, Qy = +1 kN and Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

z þ Q2
y

q
) and in Table 10 the shear correction factors jy, jz are

presented, for various E1/E2 ratios. Moreover, in order to determine the discrepancy due to the assump-
tion of constant transverse shear stress along the thickness coordinate followed by the �refined models�, in
Table 11 the shear correction factors jy, jz of the special case of various homogeneous steel HEB cross-
sections are presented as compared with those obtained from the thin tube theory (TTT), in which the
aforementioned assumption is followed (Vlasov, 1961). As expected the accuracy of the results of the
thin tube theory (TTT) is increased with the decrement of the thickness of the cross-section members
(flanges� thickness increases and web�s thickness decreases with the increment of the HEB code). Finally,
in Fig. 9 the boundary distributions of the resultant transverse shear stress (sC)j for two load cases are
presented.
Fig. 9. Distributions of the resultant transverse shear stress (sC)j along the boundary of the composite cross-section of Example 4, for
(a) Qz = �1 kN and (b) Qy = +1 kN, for Poisson�s ratios m = 0.3 and E1/E2 = 5.
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5. Concluding remarks

In this paper a boundary element method is developed for the solution of the general transverse shear
loading problem of beams of arbitrary composite constant cross-section. Two boundary value problems
that take into account the effect of Poisson�s ratio are formulated with respect to stress functions and solved
employing a pure BEM approach. The evaluation of the transverse shear stresses at any interior point is
accomplished by direct differentiation of these stress functions, while both the coordinates of the shear cen-
ter and the shear deformation coefficients are obtained from these functions using only boundary integra-
tion. The main conclusions that can be drawn from this investigation are

(a) The numerical technique presented in this investigation is well suited for computer aided analysis for
beams of arbitrary composite cross-section, while the analysis is performed with respect to an arbitrary
system of axes and not necessarily the principal one.

(b) The convergence of the obtained results employing the proposed numerical procedure with those
obtained from a 3-D FEM solution applied to the �exact� elastic beam theory is easily verified.

(c) The resulting discrepancy of the shear stresses, arising from different values of the Poisson�s ratio m dem-
onstrates the significant influence of this material constant.

(d) Engineering beam theory can give accurate results only in homogeneous cross-sections with continuous
variation of width and zero Poisson�s ratio.

(e) The alteration of the shear center coordinates and the shear deformation coefficients with the Poisson�s
ratio variation is not significant.

(f) Ignorance of the continuity conditions of transverse shear stresses at interfaces leads to discrepancies in
the results.

(g) The assumption that the transverse shear stress along the thickness coordinate remains constant is right
only in thin-walled cross-sections.

(h) The accuracy of the results is remarkable.
(i) The developed procedure retains the advantages of a BEM solution over a pure domain discretization

method since it requires only boundary discretization.
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