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Abstract

In this paper a boundary element method is developed for the solution of the general transverse shear loading prob-
lem of composite beams of arbitrary constant cross-section. The composite beam consists of materials in contact, each
of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same
Poisson’s ratio and are firmly bonded together. The analysis of the beam is accomplished with respect to a coordinate
system that has its origin at the centroid of the cross-section, while its axes are not necessarily the principal ones. The
transverse shear loading is applied at the shear centre of the cross-section, avoiding in this way the induction of a twist-
ing moment. Two boundary value problems that take into account the effect of Poisson’s ratio are formulated with
respect to stress functions and solved employing a pure BEM approach, that is only boundary discretization is used.
The evaluation of the transverse shear stresses is accomplished by direct differentiation of these stress functions, while
both the coordinates of the shear center and the shear deformation coefficients are obtained from these functions using
only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency,
the accuracy and the range of applications of the developed method. The accuracy of the proposed shear deformation
coeflicients compared with those obtained from a 3-D FEM solution of the ‘exact’ elastic beam theory is remarkable.
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Nomenclature

A area of composite cross-section

C centroid of composite cross-section

E; modulus of elasticity of the jth material
G; shear modulus of the jth material

I, I.., I,- moments of inertia with respect to y and z axes and the product of inertia of composite
cross-section

K number of materials

M center of twist of composite cross-section

M,, M. bending moments with respect to y and z axes

0,, Q- shear forces with respect to y and z axes

S shear center of composite cross-section

Vs, zs coordinates of the shear center with respect to the centroid of cross-section

a,, a., a,. shear deformation coefficients

I; boundary of the jth inclusion
Ky, K-, Ky shear correction factors
v Poisson’s ratio

(0xx); normal stress component in x direction

(Txy)j> (Txz); transverse (direct) shear stress components in y and z directions, respectively

(tq);  resultant transverse shear stress in the regions Q;

(Txn)j» (7x7); transverse shear stress components in directions » and ¢, normal and tangential to the
cross-section boundary I';, respectively

(tr);  resultant transverse shear stress to the cross-section boundary TI';

(@(y,2));, (O(y,z)); stress functions

Q region occupied by the jth material

1. Introduction

The problem of a homogeneous prismatic beam subjected in shear torsionless loading has been widely
studied from both the analytical and numerical point of view. Both theoretical discussions concerning flex-
ural shear stresses (Weber, 1924; Trefftz, 1935; Goodier, 1944), or the problem of the center of shear (Goo-
dier, 1944; Osgood, 1943; Weinstein, 1947; Reissner and Tsai, 1972) and text books giving detailed
representations of these topics (Timoshenko and Goodier, 1984; Sokolnikoff, 1956; Love, 1952) are men-
tioned among the extended analytical studies.

Numerical methods have also been used for the analysis of the aforementioned problem. Among these
methods the majority of researchers have employed the finite element method based on assumptions for the
displacement field (Mason and Herrmann, 1968) or introducing a stress function that fulfils the equilibrium
equations for the evaluation of the shear stresses (Gruttmann et al., 1999, 1998; Koczyk, 1994) and the
shear deformation coefficients (Gruttmann and Wagner, 2001). The boundary element method has also
been employed by Sauer (1980) for the calculation of shear stresses based on Weber analysis (1924) and
neglecting Poisson ratio v. BEM was also used for the calculation of the shear center location in an arbi-
trary homogeneous cross-section by Chou (1993) and for the presentation of a solution to the general flex-
ure problem in an isotropic only simply connected arbitrary cross-section beam by Friedman and
Kosmatka (2000). In this research effort the analysis is accomplished with respect only to the principal
bending axes of the cross-section restricting in this way its generality.
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Contrary to these many efforts, to the authors’ knowledge very little work has been done on the cor-
responding problem of composite beams of arbitrary constant cross-section. In the pioneer work of Mus-
khelishvili (1963) the governing equations of the problem are formulated and an analytic solution of a
composite cross-section of simple geometry is presented. Nouri and Gay (1994) presented a numerical
solution for the shear problem of composite beams of simply connected materials in contact, of arbitrary
cross-section, employing the 2-D FEM and taking into account the boundary conditions at the interfaces.
In this reference the shear problem is formulated with respect to the principal bending axes system, which
as it is stated below is different from the principal shear axes one, while the evaluation of the non-diagonal
shear deformation coefficient is missing. Moreover, Fatmi and Zenzri (2004) based on the ‘exact’ elastic
beam theory presented a numerical solution of the shear problem of composite beams of arbitrary cross-
section employing the 3-D FEM. The last two references take into account the boundary conditions at the
interfaces in contrast with all other research efforts in composite beams of arbitrary cross-section that
ignore them (Pilkey, 2002), resulting in an analysis that is not completely rigorous. In the case of com-
posite beams of thin-walled or laminated cross-sections the aforementioned problem can also be solved
using the ‘refined models’ (Reddy, 1989; Touratier, 1992a,b; Karama et al., 2003). However, these models
do not satisfy the continuity conditions of transverse shear stress at layer interfaces and assume that the
transverse shear stress along the thickness coordinate remains constant, leading to the fact that kinematic
or static assumptions cannot be always valid. It is also worth here noting that most of the commercial
finite element packages can only handle the shear problem of homogeneous beams (MSC/NASTRAN,
1999), while the corresponding ones handling composite beams usually ignore the boundary conditions
at the interfaces (SectionBuilder, 2002), with very few exceptions of scientific programs (Debard/
RDMS5.01, 1997). Finally, the BEM has not yet been used for the solution of the aforementioned
problem.

In this paper a boundary element method is developed for the solution of the general transverse shear
loading problem of composite beams of arbitrary constant cross-section. The composite beam consists
of materials in contact, each of which can surround a finite number of inclusions. The materials have dif-
ferent elasticity and shear moduli with same Poisson’s ratio and are firmly bonded together. The shear load-
ing is applied at the shear center of the cross-section, avoiding in this way the induction of a twisting
moment. The formulation of the problem follows the governing equations presented in Pilkey (2002).
Two boundary value problems that take into account the effect of Poisson’s ratio are formulated with
respect to stress functions and solved employing a pure BEM approach, that is only boundary discretiza-
tion is used. The evaluation of the transverse shear stresses at any interior point is accomplished by direct
differentiation of these stress functions, while both the coordinates of the shear center and the shear defor-
mation coefficients are obtained from these functions using only boundary integration. The essential fea-
tures and novel aspects of the present formulation are summarized as follows.

(i) All basic equations are formulated with respect to an arbitrary coordinate system, which is not
restricted to the principal axes.

(i1) The boundary conditions at the interfaces between different material regions have been considered.

(ii1) There is no need of splitting the stress function into the sum of two alternate cross-section functions
leading to resolved shear stresses. A stress function is introduced, which fulfils the equilibrium and
compatibility equations and from which the transverse shear stresses at any interior point are obtained
by direct differentiation.

(iv) The shear deformation coefficients are evaluated using an energy approach instead of Timoshenko’s
(Timoshenko and Goodier, 1984) and Cowper’s (Cowper, 1966) definitions, for which several authors
(Schramm et al., 1994; Schramm et al., 1997) have pointed out that one obtains unsatisfactory results
or definitions given by other researchers (Stephen, 1980; Hutchinson, 2001), for which these factors
take negative values.
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(v) Finite element methods require the whole cross-section to be discretized into area elements and are
also limited with respect to the shape (distortion) of the elements. BEM solutions require only bound-
ary discretization resulting in line or parabolic elements instead of area elements of the FEM solu-
tions, while a small number of line elements are required to achieve high accuracy.

(vi) The effect of the material’s Poisson ratio v is taken into account.

(vii) The proposed method can be efficiently applied to homogeneous and composite beams of thin walled
cross-section and to laminated composite beams, without the restrictions of the ‘refined models’.

Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and
the range of applications of the developed method. The accuracy of the proposed shear deformation coef-
ficients compared with those obtained from a 3-D FEM solution of the ‘exact’ elastic beam theory (Fatmi
and Zenzri, 2004) is remarkable.

2. Statement of the problem

Consider a prismatic beam of length L with an arbitrarily shaped composite cross-section consisting of
materials in contact, each of which can surround a finite number of inclusions, with modulus of elasticity

i» shear modulus G; and common Poisson’s ratio v, occupying the regions Q; (j=1,2,...,K) of the y, z
plane (Fig. 1). The materlals of these regions are firmly bonded together and are assumed homogeneous,
isotropic and linearly elastic. Let also the boundaries of the nonintersecting regions £2; be denoted by I';
(j=1,2,...,K). These boundary curves are piecewise smooth, i.e. they may have a finite number of corners.
Without loss of generality, it may be assumed that the beam end with centroid at point C is fixed, while the
x-axis of the coordinate system is the line joining the centroids of the cross-sections.

When the beam is subjected to torsionless bending arising from a concentrated load Q applied at the
shear center S of its free end composite cross-section, at a distance x from the fixed end, the internal forces
are the shear forces Q,, Q. being the components of the concentrated load Q along y and z axes, respec-
tively and the bending moments M, M. given as

M,=-0.(L—x) Mz:Qy(L_x) (la,b)

Taking into account that the beam is not subjected to external axial centroidal forces and following the
assumption that plane sections normal to the axis of a line member before deformation remain plane after
deformation, the normal component of stress acting on the beam composite cross-section is given as

M1, + M., Ml +M.1
_< Ll 12W>y+< 1 12W>Z] @)
iz T yz itz yz

K E K E Sy
ZE—/de I.= ZE—/de, I)Z:;ELjﬁde (3a,b,c¢)

are the moments of inertia with respect to y and z axes and the product of inertia of the composite cross-
section, respectively. Substituting Eq. (1a,b) into Eq. (2) the normal component of stress can be written as

E.

J

(axx)j = E

where

E.

J

E

L—x

2
Lyl — 12,

(axx)j =

0.0, —=1.) + 0, e ym]] @
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E,=0

(b) (C: centroid, S: shear center)

Fig. 1. Prismatic beam subjected to torsionless bending (a) and two dimensional region © occupied by the composite cross-section (b).

Following the Saint—Venant’s assumption that the stress components (s,,);, (¢--); and (t,.); are negligibly
small, the state of stress will be determined by evaluating the transverse (direct) shear stress components
(txy); and (1,.);. Neglecting the body forces the last two equations of equilibrium of the three-dimensional
elasticity can be written as

0 (5a,b)

leading to the conclusion that the shear stress distributions are functions of y and z, that is they are the same
over any cross-section. The evaluation of these distributions will be accomplished by regarding the beam
subjected separately to O, and Q. shear forces and obtaining the arising shear stress components by
superposition.

It is worth here noting that in the most general case of a composite cross-section with materials of dif-
ferent Poisson’s ratios, the problem of torsionless bending becomes considerably more complicated, due to
the fact that in this case the assumption of negligibly small stress components (a,,);, (¢--); and (7,.); is not
correct (Muskhelishvili, 1963). However, having in mind that the values of the Poisson’s ratios even for
materials with significantly different elastic moduli are almost the same it follows that the aforementioned
restriction is realistic.
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Thus, considering the beam subjected only to Q. shear force the first equation of equilibrium may be
written as

a(fxy)j a(TXZ)j E; 0.
& & Bl bl =) )

Using Hooke’s stress—strain equations the resulting strain components satisfy identically four of the com-
patibility conditions. The rest two conditions using Eq. (4) for O, = 0 can be written as

0 (3(rs), 3(w), _E vO.1.. (7a)
v\ oy & E\ (14 ) (1W1ﬂ - 1;)

6 6(sz)/. a(TXJ’)j Ei VQZIJZ

E\ o E ) B a1l 1)

Assuming a stress function (®(y,z)); having continuous partial derivatives up to the third order such that
the two compatibility conditions (7a,b) to be identically satisfied, the transverse shear stress components
(Txy)j» (Txz); and the resultant shear stress (7o), in the regions Q; (j = 1,2,...,K) are expressed as

_ g (2% _
(Txy)j - Ej B <ay ; dy (83—)
_p (2% _
(1), = E; 2 (az j d. (8b)
3 1/2
(ra), = | ()} + ()] (80)
where d,, d. are the y, z components of the vector d defined by
2 2 2 .2

in which iy,i, denote the unit vectors along the y and z axes and B is defined as
B= B4 = E2(1+v) Iyl — I2) (10)

depending on the moduli of elasticity, the Poisson’s ratio and the cross-section geometry. Substituting Egs.
(8a,b) in Eq. (6), the partial Poisson type differential equation governing the stress function (9(y, z)); is ob-
tained as
(V?@), =2(I.y —I.z) inQ; (j=1.2,...,K) (11)

where (V> ) = (62/6)/2)_]- + (Gz/ﬁzz)j is the Laplace operator and Q = Uf:]Qj denotes the whole region of the
composite cross-section.

The boundary conditions of the aforementioned stress function will be derived from the following phys-
ical considerations:

e The traction vector in the direction of the normal vector n vanishes on the free surface of the beam, that is

(Txn)j = (Txy)jny + (sz)jnz =0 (128.)
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e The traction vectors in the direction of the normal vector n on the interfaces separating the j and i dif-
ferent materials are equal in magnitude and opposite in direction, that is

(Txn)j = (Txn)i or (Txy)jny + (sz)j”z = (Txy),-ny + (sz)[nz (12b)

e The displacement components remain continuous across the interfaces, since it is assumed that the mate-
rials are firmly bonded together

where n,=cosf, n.=sinf are the direction cosines of the normal vector n to the boundaries I
(Gi=1,2,...,K), with 8 =y, n (see Fig. 1). It is worth noting that on both sides of the equality of (12b)
the normal vector n points in one and the same direction, while the third physical consideration ensures
the continuity of the stress function (®(y, z)); inside the region Q; (j = 1,2, . ., K) as well as across the bound-
aries separating different materials ((®); = (9),).

Substituting Eqgs. (8a,b) in Egs. (12a,b), the Neumann type boundary condition of the stress function can
be written as

0 o .

where E; is the modulus of elasticity of the ©; region at the common part of the boundaries of Q; and Q;
regions, or E; = 0 at the free part of the boundary of Q; region, while (0/0n); = n,(0/dy); + n.(6/0z); denotes
the directional derivative normal to the boundary I';. The vector n normal to the boundary I'; is positive if it
points to the exterior of the ; region. It is worth here noting that the normal derivatives across the interior
boundaries vary discontinuously.

Similarly, considering the beam subjected only to Q, shear force and assuming the stress function
(©(y,2)); having continuous partial derivatives up to the third order such that all the compatibility condi-
tions to be identically satisfied, the transverse shear stress components 7, 7,. are expressed as

9 (aa_f)j _ ey} (14a)

(TXJ’)j = Ej B
00
— | —e. 14b
& ), ‘ ] (14b)
where ey, e. are the y, z components of the vector e defined by

2 _ 2 2 2
e=ey, tei. = {V<I}yy22_1yz)/z>]iy+ [V([yyyz"‘lyzy 3 - )}iz (15)

Substituting Eqs. (14a,b) in the first equation of equilibrium of the three-dimensional elasticity and in the
boundary condition (12a,b) the following Neumann problem for the stress function (6(y, z)); is obtained as

90,

(TxZ)j =E; B

(V?0), =2(l.z—1,y) inQ; (j=12,...,K) (16)
00 00 ,
E,(E)j—Ei(E) =(E,—E)n-e onT;(j=1,2,...,K) (17)

Having in mind that the shear center S is defined as the point of the cross-section at which the torsional
moment arising from the transverse shear stresses vanishes, the coordinates {yg,zg} of this point with re-
spect to the system of axes with origin the cross-section centroid can be derived from the condition
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K
ySQz - ZSQy = MX = ySQz - ZSQy = Z [2 |:(TXZ)jy - (Txy)jz} dQJ (18)
j=1 7

For O, =0, after substituting Eqs. (8a,b) in Eq. (18), the ys coordinate of the shear center S can be ob-

tained from
0P oP
WW=—) —z|=—) —yd,+zd,
(%), (&), -

1 K
Vs =73 /E
sz:]: Q; !

Similarly, for Q. = 0 after substituting Egs. (14a,b) in Eq. (18), the zg coordinate of the shear center S can

be obtained from
00 00 N
zZ\— ] —yl=— | —ze,
&) "= / e, + ye.

l K
2 szl/gj,

Egs. (19) and (20) denote that the {yg,zs} coordinates of the shear center S are independent from shear
loading. Moreover, it can be shown that in the case of zero Poisson’s ratio, the coordinates of the shear
center S and the center of twist M coincide, that is

dQ; (19)

o, (20)

Ys=Vu Zs =ZIm (21a,c)

where the equations for the coordinates {y,,z,} are given in Sapountzakis (2000). This coincidence of
these centers was first recognized by Weber (1924) by applying the Betty—Maxwell reciprocal relations.

Furthermore, the shear deformation coefficients a,, a. and a,.=a., which are introduced from
the approximate formula for the evaluation of the shear strain energy per unit length (Schramm et al.,
1997)

2
ay Qy a; Qf ayZ Qy Qz

Ya =546, " 246, T 240, -
are evaluated equating this approximate energy with the exact one given from
X 2 2
B E, (TXZ)/‘ + (Tx)’)j
Uexacl - Zl: E /g 2Gl d‘Qj (23)
J=l T
and are obtained for the cases {0, # 0,0.=0}, {0, =0,0. # 0} and {Q, # 0,0. # 0}, respectively, as
1 a4 &
1 a4 & 24b
e S (70, 0) (70, a)an o
J= J
a4, =4 i ZK: E((ve),—d) - ((Ve),—e)de, (24¢)
Ky ElA Q
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is the area of the composite cross-section, 4 is defined from Eq. (10), while (V); = i,(0/0y); + i.(0/0z); is a
symbolic vector. Employing the shear deformation coefficients a,, a., a,. using Eqgs. (24a,b,c) we can define
the cross-section shear rigidities of the Timoshenko’s beam theory as

Gi4,y = G14/a, (26a)
G]ASZ = G]A/az (26b)
GIAS}Z = GIA/CZ}Z (260)

In the case of an asymmetric cross-section the principal shear axes, defined as (Schramm et al., 1997)

2a,,

tan 2¢° = (27)

a, —a.
do not coincide with the principal bending ones, defined by the engineering beam theory. Due to this dif-
ference, the deflection components in the y and z directions are in general coupled, even if the system of axes
of the cross-section coincides with the principal bending one (Pilkey, 2002). If the cross-section is symmetric
about an axis, the principal shear axes system coincides with the principal bending one. In this case, the
deflection components with respect to the principal directions are not coupled any more (a,. = a., =0
and /1, =1.,=0).

It is worth here noting that the reduction of Egs. (2) and (3a,b,c) using the modulus of elasticity £ and
of Egs. (22), (23), (25) and (26a,b,c) using the shear modulus G, of the first material, could be achieved
using any other material, considering it as reference material.

Finally, considering the beam subjected only to Q. shear force the shear stress components at points on
the boundary I'; (j = 1,2,.. ., K) are evaluated from the established values of (®); and (0®/0n); using the fol-
lowing relations

(), = £/ % [(2—@) —n d] (25a)
(rx,)j = E_,-% (%—?) _ +d,sin ff — d, cos ﬁ] (28b)
(), = [l + ()] (280)

where the tangential derivative (09/0r); = (09/0s); is computed numerically using appropriately central,
backward or forward differences. It is worth noting that (z,,); is the bond stress at the interface part of
the boundary I';, while (tr); is the resultant boundary shear stress.

Similarly, considering the beam subjected only to O, shear force the shear stress components at points on
the boundary I'; (j = 1,2,...,K) are evaluated from the established values of (), and (00/0n); as

(aa_@) . ] (292)

(tu);, = E; 9 l(aa—?) +e,sin ff — e, cos ﬁ] (29b)
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3. Integral representations—numerical solution

According to the precedent analysis, the shear problem of a composite beam reduces in establishing the
stress functions (@(y,z)); and (©(y, z)); having continuous partial derivatives up to the third order, satisfying
the governing equations (11) and (16) inside the regions Q; (j = 1,2,...,K) of the y, z plane and the bound-
ary conditions (13) and (17) on the corresponding boundary I';, respectively.

The numerical solution of the boundary value problems described by Eqgs. (11), (13) and (16), (17) is sim-
ilar. For this reason, in the following we will analyze the solution of the problem of Egs. (11) and (13) not-
ing any alteration or addition for the problem of Egs. (13) and (17).

The evaluation of the stress function (9(y,z)); is accomplished using BEM as this is presented in
Sapountzakis (2000). According to this method, the Green identity

[, (7o)~ @ 5w)as - | <W(aa—¢) ~ () aa_W> & (30)

when applied to the stress function (®); and to the fundamental solution

1
V= _nr(P,0) P.OEY, (31)
p :
which is a particular singular solution of the equation
VY = 5(P, 0) (32)
yields
cosa 0d(q
&(@(P)), :/g lnr(V2¢(Q))deQ+/r ((qb(q))jT— (#) lnr> ds, (33)
j Jj J

with o =rn; r=|P—gq|, P,OcQ,gel;(j=1,2,..,K) and ¢ =2m, © or 0 depending on whether the
point P is inside the region Q,, P = p on the boundary I'; or P outside £, respectively. Note that the bound-
ary has been assumed to be smooth at the point p € I';. Using Eq. (11) the integral representation (33) is
written as

(@), = [ S@mrag, + / | ((«p(q)) pL <ad;—,(1q))jln r> ds, (34)
where the function f'is defined as

f=2(I.y—1.2) (35)
Applying once more the Green identity given by (30) for the function f satisfying the following equation

Vi =0 (36)
and for the function U defined as

U:%rz(lnr—l) (37)
satisfying the following equation

ViU=Y (38)

the domain integral of Eq. (34) can be converted into a line integral along the boundaries of the cross-sec-
tion and the integral representation (34) is written as
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e(@(P)), = % /r <f(q)(21nr— 1)rcosa —a%iq)(lnr— 1)r2> ds,
+/f, ((cb(q))jg— (aq;—ff’)>jlnr> ds, )

In Eq. (39) the subscript ¢ in the arc element ds, indicates that point ¢ varies along the boundaries of the
cross-section during integration and differentiation, while the point P (or p) is retained constant. The values
of the function (@(P)); inside the region €; can be established from the integral representation (39) if (®);
and its derivative (0¢/0n); were known on the boundaries I';. Thus,

(®(P)), = sin /1 (f(q)(Zlnr —rcosa— ag_(:)(lm _ 1)},2) s,
+21—n <(‘P(‘1))jg — (6?_}(:])) Alnr> ds,, PeQ;, g€l (40)

The unknown boundary quantities (&); and (0®/0n); can be evaluated from the solution of a boundary inte-
gral equation on the boundary I';, which is derived working as follows.

We consider a point p lying on the boundary I'; (j = 1,2,.. ., K). For a point ¢ lying on the boundary I'; of
the region Q; Eq. (39) may be written as

n(P(p)); = % /F (f(q)(Zlnr— 1)rcosa — ajéiq) (Inr— l)rz) ds,

Similarly, for a point ¢ lying on the part of the boundary I'; of the region €, which is an interface between
regions £; and Qk, Eq. (39) may be written as

w0, =+ | (~f@@mr—1reosa+ 2D inr - 1) g,
4 T on
+/ (_((p(q))k cosa + (w(q)) 111]") dsq7 g€ I, (42)
Ty r on /),
Moreover, for a point ¢ lying on the boundaries I'; (i = 1,2,...,K,i # k) Eq. (39) yields
0= % / (-f(q)(Zlnr— 1)rcosa + aj;}(q) (Inr— 1)r2) ds,
/ n
+/ <_((p(q))i@+ (645_@) lnr) dsg, g€l (43)
I r an ;

Notice that the sign in Egs. (42) and (43) is reversed, since the unit vector normal to the boundary is
negative.
Multiplying Eq. (41) by E;, Eq. (42) by Ey, Eq. (43) by E; (i=1,2,...,K,i # k) and adding them yields

n(®(p)),(E; + Ex) = % Z /r (E; - E)) (f(q)(Zlnr— 1)rcosa —%(:)(lnr— l)rz) ds,

+Z / E,-(a‘g—fq"))j—E,(a‘g—ff))[} 1nr] ds, (44)

coSa
(E; — E)(@(q)),—— —

r




3272 V.G. Mokos, E.J. Sapountzakis | International Journal of Solids and Structures 42 (2005) 3261-3287

Using Eq. (13) and substituting Eq. (34) in Eq. (44), the following singular boundary integral equation is
obtained

(), (E; + Ex)
% XK: / ) [(lzy = 1.z)2Inr — 1)rcosa — (I,.cos B — L.sin B) (Inr — 1)r*] ds,
+ Z /r (E,- E,») [(¢(q))j CO:a —(n-d)In r} ds, (45)

=1

It is worth here noting that in Eq. (45) the point p lies on the boundary I'; (j = 1,2,.. ., K), which is an
interface between regions ; and €, while the point g varies along the boundary I'; (j = 1,2,.. ., K), which is
an interface between regions Q; and Q;, while E; = E; = 0 in the case I';is a free boundary Moreover in Eq.
(45) the normal n to the boundary ' points to the exterlor of the region ; and I'; is traveled only once.

For any given geometry of the comp051te cross-section the stress functlon (<D(s))] on the boundary I’;
(j=1,2,...,K) is obtained from the solution of the boundary integral equation (45). Thus, using constant
boundary elements to approximate the line integrals along the boundaries and a collocation technique the
following linear system of simultaneous algebraic equations is established

[l{e} = {C} (46)

where

{‘I’}T = { (((15)1)1 (((p)l)z (((p)l)M ((¢)2)M+1 ((¢)K)N} (47)

are the values of the boundary quantities (®); at the nodal points of the NV boundary elements. Moreover, in
Eq. (46) [A]and {C} are square N x N and column N x 1 known coefficient matrices, respectively. From the
solution of the system of simultaneous algebraic equations (46) the values of the stress function (®); for all
boundary nodal points are established. Notice that the stress function (®); is determined exactly apart from
an arbitrary constant term (Neumann problem). However, the stress components, the coordinates of the
shear center and the shear deformation coefficients are not influenced by this arbitrary constant, since
according to Egs. (8a,b), (19), (20) and (24a,b,c) only the derivatives of (9); are required for the evaluation
of these quantities.

The derivatives of (®); with respect to y and z at any interior point of the region €, for the calculation of
the stress resultants (Egs. (8a,b)) are computed differentiating the integral representation (Eq. 40) of the
stress function (®); as

(52 -2 (2 (50) =,

+4L/ ((Iz — I,.y)(2cos wcosa + (2Inr — 1) cos B)
© Jr, )

—(I.sinp—1I,.cos B)(2Inr — 1)rcosw)ds, (48a)

<aq&a_(zm>j _ % /rj <(<P(q)), sin(C:Z— a) L (62}(16]))/ sinw) s,

1
+4—/ ((Iz — I,.y)(2sinwcosa + (2Inr — 1) sin B)
Y r; J

—(Isin p—1I,.cos B)(2Inr — 1)rsinw)ds, (48b)
withr=|P—¢|, PcQ, gcT;and v = x,7.
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The derivative (0¢/0n); for the evaluation of the shear stresses is known only on the free parts of the
boundaries I';. Its values on the interfaces can be established from Eq. (13) and the solution of the singular
integral equation (41) using the boundary values of (®); obtained from the solution of Eq. (45).

Similarly, for any given geometry of the composite cross-section the stress function (@(s)); on the bound-
aries I'; (j=1,2,...,K) is obtained from the solution of the following singular boundary integral equation

n(6(p)), (E; + Ex)

:% Z / (E; — E))[(I.z = I,y)(2Inr — 1)rcosa — (I,.sin B — I,cosP) (Inr — 1)r*] ds,
=1 7T

J

£ cosa

> E-E) [(0(4), =%~ (n- ) Inr] s, (49)
j=1 J

while the values of the derivative (00/0n); can be established from Eq. (17) and the solution of the following

singular boundary integral equation

o), = [ ((@@)),—? (27 1m> ds,

1

+3 /r ((1,.z— Iyy)(2Inr — 1)rcosa — (I, sin f — I,, cos f) (Inr — 1)) ds, (50)
J

using the boundary values of (©); obtained from the solution of Eq. (49). Moreover, the values of the func-

tion (@(P)); at any interior point of the region €, can be established from the following integral represen-

tation as

©r), =5 [ ((@@))f":“ -(%32) _hw) as,

+$ ((I,.z = 1,,y)(2Inr — 1)rcosa — (I,.sin p — I, cos ) (Inr — 1)r*) ds, (51)
I

while, the derivatives of (@); with respect to y and z axis from the following integral representations

(a%ip)) = % /F ((@(q))jms(c;— a) . (666}(;1)) ACO:@) &,

1
+ ((I,yy = 1,.z)(2coswcosa + (2Inr — 1) cos f)
r;

—(I,ycos p—1I,.sin B)(2Inr — 1)rcos w) ds, (52a)

() ) (w572 (52) 52)

1
+E / ((I,,y —1,.z)(2sinwcosa + (2Inr — 1) sin f)
T

—(Iycos p—1I.sinf)(2Inr — 1)rsinw)ds, (52b)
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Moreover, since the torsionless bending problem of beams is solved by the BEM, the domain integrals in
Egs. (3a,b,¢), (19), (20), (24a,b,c) and (25) have to be converted to boundary line ones, in order to maintain
the pure boundary character of the method. This is accomplished using the Green identity given in Eq. (30)
and the Gauss theorem given by the following relations

ghd /h de; +/ hgcos fds (53a)
/g%thj:—/ hg—gd!)j—&—/ hg sin fds (53b)
9 ©Z g Ty

Thus, using the Gauss theorem for the moments of inertia, the product of inertia and the cross-section area
we can write the following relations

I, = EL Z /F (Ej — E,-) (yzz cos [3) ds (54a)
=Y
1. 5 Z / (E; — E;)(zv sin ) ds (54b)
Jj=1
}Z:2E1 z;/r (E; — E;) (zy* cos B) ds (54c)
1 & .
=56 Zl: /F (G; — G;)(vcos B+ zsin B) ds (54d)

while the {yg,zs} coordinates of the shear center S are obtained from the calculation of the following
boundary line integrals

1
Vs = 432/ (E; —Ei) (vlzz<2y +y222)cosﬁ

+vI,, <%z4 —|—y222) sin f — 4(®),(zcos f — ysin ﬁ)) ds (55a)

K
zg = % Z /r (E; - E)) (vl}y (%24 +y222) sin B+ v, (%y4 +y222> cos f
=1
+4(0),(zcos f — ysin ﬁ)) ds (55b)

Moreover, applying the Gauss theorem for the functions {(0),,0(0),/0y}, {(©),,0(0),/0z}, {(P);,0(P);/dy},
{(®);,0(®),/0z}, {(©);,0(P);/0y} and {(O);,0(®P);/0z} the shear deformation coefficients a,, a., a,. = a., are
obtained as

a, =

1
((4v +2)(Iyley — 1:1o:) + =V (Ify + Iiz)[ed - 1@.3) (56a)

E\A? 4
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A 1
a; = E A2 ((4\1 + 2) (Izzlq)z - IJ/ZIQW) + sz <]§z + [)22>16d - Iq)d) (56b)
1
AZ
R,=0.15m
R;=0.10m
- E, R,=0.05m
R\ A B -
Ry C Ty
Ex

<

i 0.125m

Fig. 2. Composite circular tube cross-section of the cantilever beam of Example 1.

Table 1
Resultant transverse shear stresses at points A and B (kPa) for different Poisson’s ratios of the composite circular tube cross-section of
Example 1

E\/E; E5/E, (td)s (td)1
Present study Muskhelishvili (1963) Present study Muskhelishvili (1963)

v=20

1 1 8.949181 8.952465 5.514528 5.514719
2 7.642280 - 4.628520 -

2 2 6.539870 6.542557 5.106785 5.108449
3 5.946931 - 4.596984 -

3 3 5.136228 5.138963 4.720502 4.722953
4 4.794630 - 4.375467 -

4 4 4.225295 4.228171 4.435614 4.438568
5 4.002365 - 4.179056 -

5 5 3.587670 3.590691 4.224006 4.227311
6 3.430458 - 4.021596 -

v=20.3

1 1 8.260418 8.263814 5.090165 5.090510
2 7.116921 - 4.306791 -

2 2 6.036552 6.039283 4.713688 4.715491
3 5.522474 - 4.266888 -

3 3 4.740928 4.743658 4.357084 4.359649
4 4.445957 - 4.055912 -

4 4 3.900092 3.902927 4.094092 4.097140
5 3.708003 - 3.870661 -

5 5 3.311531 3.314484 3.898749 3.902133
6 3.176242 - 3.722733 -
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A 1

@ =pn <(2v +2)(Ido: — 1:loy) 4+ 2v(Lyloy — 1,21 s:) — 7 Vv (Ly + 1)L eq — Iq,e) (56¢)

where Ig,, I¢. and I3, are boundary integrals given from

K

loe=>_ | (E;—E)(®),(n-e)ds (57a)
j=1 YT
K

Ioe=> | (E;—E)(®),(n-e)ds (57b)
j=1 JIj

Table 2
Coordinate of the shear center yg (cm) with respect to the geometric center of the circles of the composite circular tube cross-section of
Example 1

E]/E2 E3/E2 v=20 v=20.3
1 2 —2.7997 —2.5323
2 3 —2.0257 —1.8097
3 4 —1.5950 —1.4189
4 5 —1.3174 —1.1696
5 6 —1.1227 —0.9957
Table 3
Shear correction factors for different Poisson’s ratios of the composite circular tube cross-section of Example 1
E\/E, E3/E2 Ky K-
v=20
1 1 0.681859 (0.681818) (Cowper, 1966) 0.681859 (0.681818) (Cowper, 1966)
(0. 681818) (Renton, 1997) (0. 681818) (Renton, 1997)
2 0.640786 0.657460
2 2 0.641179 0.641179
3 0.619113 0.626847
3 3 0.616298 0.616298
4 0.602910 0.607428
4 4 0.600434 0.600434
5 0.591500 0.594473
5 5 0.589558 0.589558
6 0.583187 0.585294
v=0.3
1 1 0.679233 (0.714024) (Cowper, 1966) 0.679233 (0.714024) (Cowper, 1966)
(0.679188) (Renton, 1997) (0.679188) (Renton, 1997)
2 0.638623 0.655198
2 2 0.639397 0.639397
3 0.617548 0.625189
3 3 0.614919 0.614919
4 0.601652 0.606107
4 4 0.599284 0.599284
5 0.590427 0.593355
5 5 0.588554 0.588554
6 0.582234 0.584310
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K
lgg = Z / (E; — E;)(®),(n-d)ds (57¢)
j=1 7T
while I, Io-, Ipy, 1p- and 1.4, are domain integrals given from

K
o=y [ E(©)d9, (s8a)
=1 J

Fig. 3. Distributions of the resultant transverse shear stress (o), in the interior of the composite circular tube cross-section of Example
1, for v=10.0, E\/E, =1, E3/E>» =2 and for (a) Q.= —1kN and (b) 0, =+1 kN.
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K

19222/ E;(0),2dQ; (58b)
j=1 J&;
K

In =3 [ B@)yae, (58¢)
j=1 JQ
K

1@:2/ E/(®),2dQ; (58d)
=1 JQ;
K

Ied:Z/ E;(y* + 2 +2°7)dQ; (58e)
j=1 7%

which can be converted into boundary integrals by applying the Green identity for the functions {(®);, 2},
{(0),1°), {(#),2°} and {(®);,5°} as

Z 2

0.4m

<Y

. (0]
i 0.3m

y

Fig. 4. Composite cross-section of the cantilever beam of Example 2.

Table 4
Coordinate z- (cm) of the centroid C and resultant transverse shear stress at this point (kPa) for two different cases of concentrated
loading and Poisson’s ratios of the composite cross-section of Example 2

E\/E, Zc (§),

0.=-1kN 0,=+1kN

v=0 v=0.33 v=20 v=0.33
1 20.0 12.498998 (12.5) (EBT) 11.938572 12.499163 (12.5) (EBT) 11.071304
2 18.9706 9.199799 8.728094 10.591865 9.577383
3 18.4091 7.355529 6.953806 9.505636 8.702415
4 18.0556 6.153481 5.804804 8.735040 8.065876
5 17.8125 5.300311 4.992646 8.134598 7.559545
6.837 17.5198 4.235002 3.982239 7.287670 6.829300
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N =

lg, =

max(zg), =23.7751kPa

(a)

max(zg), =25.6267kPa

(b)

zl_(: /r (E; — E) |:(1yzy322 —21,,y*z) sin § + (3(@)j cos B — y(n- e))yz} ds

22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00

24.00
22.00
20.00
18.00
16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00

3279

(59a)

Fig. 5. Distributions of the resultant transverse shear stress (7p); in the interior of the composite cross-section of Example 2, for

v=0.33, E;/E> =3 and for (a) Q. = —1 kN and (b) Q, = +1 kN.
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Table 5
Coordinate zg (cm) of the shear center for different Poisson’s ratios of the composite cross-section of Example 2
E\/E, zs(=zp) for v=0 zg for v=10.33
1 0.00 0.00
2 —0.5209 —0.4634
3 —1.3516 —1.2773
4 —2.2795 —2.2026
5 —3.2207 —3.1466
6.837 —4.8810 —4.8155
(—4.89) (Debard, 1997, RDM 5.01 Soft)
(—4.90) (Fatmi and Zenzri, 2004)
Table 6
Shear correction factors for different Poisson’s ratios of the composite cross-section of Example 2
E\/E, Ky K-
v=0 v=0.33 v=0 v=10.33
1 0.833427 0.817572 0.833412 0.831403
(0.833) (0.833)
(SectionBuilder 8.1 Soft) (SectionBuilder 8.1 Soft)
2 0.709248 0.701529 0.800961 0.799247
3 0.615573 0.611080 0.776744 0.775299
4 0.547215 0.544287 0.759048 0.757802
5 0.495951 0.493891 0.745721 0.744624
6.837  0.429505 0.428269 0.728338 0.727431
(0.49442) (0.428) (Fatmi and Zenzri, 2004) (0.74757) (0.727) (Fatmi and Zenzri, 2004)
(SectionBuilder 8.1 Soft) (SectionBuilder 8.1 Soft)
(0.430) (0.729)
(Debard, 1997, RDM 5.01 Soft) (Debard, 1997, RDM 5.01 Soft)
(0.40519) (Nouri and Gay, 1994) (0.70077) (Nouri and Gay, 1994)
V4
IS
&
o
c y
&
S =
0.25m 0.25m ;

! Il
!

i |
i ! |

Fig. 6. L-shaped composite cross-section of the cantilever beam of Example 3.
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lo. = é XK: / (E; - E,) [(21Wz4y — 1,2%) cos f + (3(@)j sinf — z(n - e))zz} ds (59b)
j=1 JIj
Loy = é Z; /F (£~ E) [(yyzy“z — L.y*2)sin f + (3(<p) cos f— y(n- d)) yz} ds (59¢)
Iy, = é Z; /F | (E; - E;) [(1}223)/2 —2I.2%) cos B+ (3(@)]. sinf — z(n - d))zz] ds (59d)
Iy = i / (E; - E)) <y4z sin § + z*y cos f + %y223 sin ﬁ) ds (59)
j=1 JT; ' 3

Finally, using the Gauss theorem the coordinates of the centroid C with respect to the arbitrarily coordinate
system Oyz are obtained from

X5y, (B = E) GEsin pds o D Jr (B - E)(Ecos p)ds
Ye = L I, (E; — E;)(7cos B+ Zsin f)ds’ o L I, (E; — E;) (ycos B+ Zsin )ds

(60a,b)

4. Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a computer
program has been written and representative examples have been studied to demonstrate the efficiency, the
accuracy and the range of applications of the developed method.

Example 1. A cantilever beam of the composite circular tube cross-section shown in Fig. 2 has been
studied. In Table 1 the resultant transverse shear stresses (14),, (t5), at points 4 and B of the cross-section
of the beam loaded at its free end by a concentrated force O, = +1 kN and for the Poisson’s ratios v =10,
v=0.3 are presented as compared wherever possible with those obtained from an analytical solution

Table 7
Distance dg and maximum resultant transverse shear stress 7, for various Poisson’s ratios of the composite cross-section of Example
3, subjected to the concentrated load Q = /07 + 0, with 0. = —1 kN and Q, = +1 kN

E\/E, dcs (cm) Tmax (kPa)

v=20 v=0.3 v=0 v=0.73
1 6.59556 6.70703 53.2551 53.1197

(6.575) (Sauer, 1980)
2 6.02817 6.15889 399117 39.9311
3 5.60475 5.75888 33.7153 33.7357
4 5.21824 5.37945 30.0376 30.0580
5 4.86748 5.02780 27.5426 27.5702
6 4.55255 4.70848 25.7086 25.7480
7 4.27094 4.42106 24.2885 24.3419
8 4.01912 4.16294 23.1485 23.2165
9 3.79340 3.93092 22.2089 22.2915
10 3.59042 3.72184 21.4187 21.5154
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(Muskhelishvili, 1963). The accuracy of the obtained results is remarkable. Also, the resulting discrepancy
of the values of the shear stresses, arising from the different values of the Poisson’s ratio v leads to the
conclusion that the influence of this material constant cannot be ignored. Moreover, in Tables 2 and 3 the
shear center coordinate yg with respect to the geometric center of the circles and the shear correction factors
Ky, K. (values in parentheses come from Cowper’s (1966) definition and from an analytical formula
developed by Renton (1997)) for various values of the Poisson’s ratio are presented, respectively. The
alteration of the shear center coordinate with the Poisson’s ratio variation is noteworthy. We remind here
the coincidence of the shear center and the center of twist, in the case of v=0. Finally, in Fig. 3 the
distributions of the interior resultant shear stress (tq); (f = 1,2,3) for two different cases of concentrated
loading are presented.

@ max(rr)j =53.1197kPa

I
Il

Fig. 7. Distributions of the resultant transverse shear stress (t); along the boundary of the composite cross-section of Example 3,
subjected to the concentrated load Q = ,/Q_f + Q}Z,, with Q.= —1kN and Q,=+1kN, for v=0.3 and for (a) E\/E,=1 and

(b)

max(rr )J. = 21.5154kPa
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Example 2. A cantilever beam having the cross-section shown in Fig. 4 has been studied. In Table 4 the
coordinate Z¢ of the centroid C with respect to the arbitrary coordinate system Oyz and the resultant trans-
verse shear stress (15), at this point (values in parentheses come from engineering beam theory (EBT) (Tim-
oshenko and Goodier, 1984)), for the Poisson’s ratios v=0, v=0.33 and for two different cases of

Table 8
Shear correction factors k,, k. and «,. of the composite cross-section of Example 3, for various Poisson’s ratios
E\/E, v=0 v=20.3

iy K. K= iy K. Kyz
1 0.69480 0.69480 —9.39352 0.68901 0.68901 —10.4203

(0.69809) (Nastran 4.0 Soft) (0.69809) (Nastran 4.0 Soft)
2 0.63197 0.74809 —9.96204 0.62603 0.74391 —10.8879
3 0.58882 0.76979 —9.47095 0.58254 0.76650 —10.2073
4 0.56314 0.78161 —9.13537 0.55641 0.77889 —9.75711
5 0.54800 0.78912 —8.97955 0.54077 0.78680 —9.53309
6 0.53932 0.79439 —8.95006 0.53155 0.79235 —9.46158
7 0.53475 0.79833 —9.00643 0.52643 0.79651 —9.49145
8 0.53288 0.80141 —9.12245 0.52401 0.79977 —9.59073
9 0.53285 0.80391 —9.28115 0.52341 0.80240 —9.73916
10 0.53408 0.80599 —9.47129 0.52408 0.80460 —9.92353

y
Fig. 8. Composite cross-section of the cantilever beam of Example 4.

Table 9

Maximum resultant transverse shear stress t,,,,x for various load cases and for Poisson’s ratio v = 0.3, of the composite cross-section of
Example 4

EI/E2 Tmax (kPa)
0: 9 Q

5 33.8033 28.4209 37.3976
6 39.9672 32.5527 43.5241
7 459167 36.3060 49.2961
8 51.6564 39.7361 54.7514
9 57.1926 42.8877 59.9221
10 62.5327 45.7976 64.8351
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concentrated loading are presented. The influence of the Poisson’s ratio v is once more verified. Moreover,
in Fig. 5 the distributions of the interior resultant shear stress (tp); (j = 1,2,3) for two different cases of
concentrated loading are presented. Finally, in Tables 5 and 6 the shear center coordinate zg with respect
to the centroid C of the composite cross-section and the shear correction factors ), k. for the Poisson’s
ratios v=0 and v =0.33 are presented, respectively, as compared wherever possible with those obtained
from 2-D FEM solutions (Debard, 1997-RDM 5.01 Soft, SectionBuilder 8.1 Soft, Nouri and Gay,
1994) and from a 3-D FEM solution (Fatmi and Zenzri, 2004) of the ‘exact’ elastic beam theory (Ladevéze
and Simmonds, 1998). Both the accuracy of the results (in Tables 5 and 6) between BEM and 3-D FEM
solutions and the discrepancy of the results (in Table 6) between BEM and 2-D FEM (SectionBuilder
8.1 Soft), arisen from the ignorance of boundary conditions at the interfaces, are easily verified. Noting
both Table 3 of the first example and Table 6 of this example, the minor alteration of the shear correction
factors with the Poisson’s ratio variation is also verified.

Example 3. A cantilever beam having the L-shaped composite cross-section shown in Fig. 6 has been stud-
ied. In Table 7 the distance dcg between centroid C and shear center S of the composite cross-section and

the maximum resultant transverse shear stress 7., for the concentrated load Q= Qf +Q§, with

Q.= —1kN and Q, =+ 1kN for various Poisson’s ratios are presented, as compared wherever possible
with those obtained from another BEM solution (Sauer, 1980). Moreover, in Fig. 7 for the same loading
the boundary distributions of the resultant transverse shear stress (7, for various E;/E, ratios and in Table
8 the shear correction factors x,, x. and k. for various Poisson’s ratios of the composite cross-section are
presented, as compared wherever possible with those obtained from a 2-D FEM solution (Nastran 4.0
Soft). The minor alteration of both the shear deformation coefficients and the shear center coordinate with
the Poisson’s ratio variation are noteworthy.

Table 10
Shear correction factors k,, «. for Poisson’s ratio v = 0.3 of the composite cross-section of Example 4
EI/EZ Ky K-
5 0.838187 0.708029
6 0.830843 0.677910
7 0.823672 0.650976
8 0.816794 0.626828
9 0.810262 0.605101
10 0.804093 0.585472
Table 11
Shear correction factors x,, «. for various homogeneous steel HEB cross-sections (v = 0.3)
HEB Ky K-

BEM TTT Error (%) BEM TTT Error (%)
300 0.6876 0.7647 —11.2129 0.2166 0.3181 —46.8606
400 0.6488 0.7281 —12.2226 0.2656 0.3538 —33.2078
500 0.6220 0.7040 —13.1833 0.2961 0.3764 —27.1192
600 0.5864 0.6668 —13.7108 0.3354 0.4105 —22.3912
700 0.5487 0.6267 —14.2154 0.3771 0.4475 —18.6688
800 0.5197 0.5925 —14.0081 0.4080 0.4840 —18.6275
900 0.4907 0.5656 —15.2639 0.4360 0.5084 —16.6055

1000 0.4626 0.5399 —16.7099 0.4613 0.5312 —15.1528
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Example 4. A cantilever beam having the composite cross-section consisting of a HEB-300 (Eurocode
No 3) totally encased in a circular matrix, as shown in Fig. 8, has been studied. In Table 9 the maximum
resultant transverse shear stress 7., of the composite cross-section subjected to various load cases

(Q.=—-1kN, 0, =+1kN and Q= /0 + Qﬁ) and in Table 10 the shear correction factors k,, k. are

presented, for various E|/E, ratios. Moreover, in order to determine the discrepancy due to the assump-
tion of constant transverse shear stress along the thickness coordinate followed by the ‘refined models’, in
Table 11 the shear correction factors x,, x. of the special case of various homogeneous steel HEB cross-
sections are presented as compared with those obtained from the thin tube theory (TTT), in which the
aforementioned assumption is followed (Vlasov, 1961). As expected the accuracy of the results of the
thin tube theory (TTT) is increased with the decrement of the thickness of the cross-section members
(flanges’ thickness increases and web’s thickness decreases with the increment of the HEB code). Finally,
in Fig. 9 the boundary distributions of the resultant transverse shear stress (t,); for two load cases are
presented.

i\l\ll”"“ I
| " \ |

:|||I|||I|"|Il ey

@ max(cr), =33.8033kPa

(b) max(7r )j =28.4209%Pa

Fig. 9. Distributions of the resultant transverse shear stress (tr); along the boundary of the composite cross-section of Example 4, for
(a) 0. =—1kN and (b) Q, =+1 kN, for Poisson’s ratios v=0.3 and E,/E, = 5.
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5. Concluding remarks

In this paper a boundary element method is developed for the solution of the general transverse shear
loading problem of beams of arbitrary composite constant cross-section. Two boundary value problems
that take into account the effect of Poisson’s ratio are formulated with respect to stress functions and solved
employing a pure BEM approach. The evaluation of the transverse shear stresses at any interior point is
accomplished by direct differentiation of these stress functions, while both the coordinates of the shear cen-
ter and the shear deformation coefficients are obtained from these functions using only boundary integra-
tion. The main conclusions that can be drawn from this investigation are

(a) The numerical technique presented in this investigation is well suited for computer aided analysis for
beams of arbitrary composite cross-section, while the analysis is performed with respect to an arbitrary
system of axes and not necessarily the principal one.

(b) The convergence of the obtained results employing the proposed numerical procedure with those
obtained from a 3-D FEM solution applied to the ‘exact’ elastic beam theory is easily verified.

(¢) The resulting discrepancy of the shear stresses, arising from different values of the Poisson’s ratio v dem-
onstrates the significant influence of this material constant.

(d) Engineering beam theory can give accurate results only in homogeneous cross-sections with continuous
variation of width and zero Poisson’s ratio.

(e) The alteration of the shear center coordinates and the shear deformation coefficients with the Poisson’s
ratio variation is not significant.

(f) Ignorance of the continuity conditions of transverse shear stresses at interfaces leads to discrepancies in
the results.

(g) The assumption that the transverse shear stress along the thickness coordinate remains constant is right
only in thin-walled cross-sections.

(h) The accuracy of the results is remarkable.

(i) The developed procedure retains the advantages of a BEM solution over a pure domain discretization
method since it requires only boundary discretization.
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